114
Views
2
CrossRef citations to date
0
Altmetric
Original Research

AGTR1 Inhibits the Progression of Lung Adenocarcinoma

, , , ORCID Icon, , , , ORCID Icon & show all
Pages 8535-8550 | Published online: 13 Nov 2021

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.2166033538338
  • Imyanitov EN, Iyevleva AG, Levchenko EV. Molecular testing and targeted therapy for non-small cell lung cancer: current status and perspectives. Crit Rev Oncol Hematol. 2021;157:103194. doi:10.1016/j.critrevonc.2020.10319433316418
  • de Groot P, Munden RF. Lung cancer epidemiology, risk factors, and prevention. Radiol Clin North Am. 2012;50(5):863–876. doi:10.1016/j.rcl.2012.06.00622974775
  • Tang H, Liao Y, Zhang C, et al. Fulvestrant-mediated inhibition of estrogen receptor signaling slows lung cancer progression. Oncol Res. 2014;22(1):13–20. doi:10.3727/096504014x1407775173031525700354
  • Hicks BM, Filion KB, Yin H, Sakr L, Udell JA, Azoulay L. Angiotensin converting enzyme inhibitors and risk of lung cancer: population based cohort study. BMJ. 2018;363:k4209. doi:10.1136/bmj.k420930355745
  • Bai Y, Shen W, Zhu M, et al. Combined detection of estrogen and tumor markers is an important reference factor in the diagnosis and prognosis of lung cancer. J Cell Biochem. 2019;120(1):105–114. doi:10.1002/jcb.2713030216488
  • Tang H, Liao Y, Xu L, et al. Estrogen and insulin-like growth factor 1 synergistically promote the development of lung adenocarcinoma in mice. Int J Cancer. 2013;133(10):2473–2482. doi:10.1002/ijc.2826223649836
  • Tang H, Liao Y, Chen G, et al. Estrogen upregulates the IGF-1 signaling pathway in lung cancer through estrogen receptor-β. Med Oncol. 2012;29(4):2640–2648. doi:10.1007/s12032-012-0198-822427208
  • Bai Y, Shen W, Zhang L, et al. Oestrogen receptor β5 and epidermal growth factor receptor synergistically promote lung cancer progression. Autoimmunity. 2018;51(4):157–165. doi:10.1080/08916934.2018.148682530022688
  • Eckenstaler R, Sandori J, Gekle M, Benndorf RA. Angiotensin II receptor type 1 - An update on structure, expression and pathology. Biochem Pharmacol. 2021;192:114673. doi:10.1016/j.bcp.2021.11467334252409
  • George AJ, Thomas WG, Hannan RD. The renin-angiotensin system and cancer: old dog, new tricks. Nature reviews. Cancer. 2010;10(11):745–759. doi:10.1038/nrc294520966920
  • Lever AF, Hole DJ, Gillis CR, et al. Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet (London, England). 1998;352(9123):179–184. doi:10.1016/s0140-6736(98)03228-0
  • Catarata MJ, Ribeiro R, Oliveira MJ, Robalo Cordeiro C, Medeiros R. Renin-angiotensin system in lung tumor and microenvironment interactions. Cancers (Basel). 2020;12:6. doi:10.3390/cancers12061457
  • Sipahi I, Debanne SM, Rowland DY, Simon DI, Fang JC. Angiotensin-receptor blockade and risk of cancer: meta-analysis of randomised controlled trials. Lancet Oncol. 2010;11(7):627–636. doi:10.1016/s1470-2045(10)70106-620542468
  • Ma Y, Xia Z, Ye C, et al. AGTR1 promotes lymph node metastasis in breast cancer by upregulating CXCR4/SDF-1α and inducing cell migration and invasion. Aging (Albany NY). 2019;11(12):3969–3992. doi:10.18632/aging.10203231219799
  • Oh E, Kim JY, Cho Y, et al. Overexpression of angiotensin II type 1 receptor in breast cancer cells induces epithelial-mesenchymal transition and promotes tumor growth and angiogenesis. Biochim Biophys Acta. 2016;1863(6Pt A):1071–1081. doi:10.1016/j.bbamcr.2016.03.01026975580
  • Li T, Fan J, Wang B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77(21):e108–e10. doi:10.1158/0008-5472.can-17-030729092952
  • Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–W560. doi:10.1093/nar/gkz43031114875
  • Györffy B, Lanczky A, Eklund AC, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1809 patients. Breast Cancer Res Treat. 2010;123(3):725–731. doi:10.1007/s10549-009-0674-920020197
  • Mizuno H, Kitada K, Nakai K, Sarai A. PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genomics. 2009;2:18. doi:10.1186/1755-8794-2-1819393097
  • Rosenbloom KR, Armstrong J, Barber GP, et al. The UCSC genome browser database: 2015 update. Nucleic Acids Res. 2015;43(Databaseissue):D670–D681. doi:10.1093/nar/gku117725428374
  • Miao YR, Zhang Q, Lei Q, et al. ImmuCellAI: a unique method for comprehensive T-cell subsets abundance prediction and its application in cancer immunotherapy. Advan Sci. 2020;7(7):1902880. doi:10.1002/advs.201902880
  • Tang H, Bai Y, Xiong L, et al. Interaction of estrogen receptor β5 and interleukin 6 receptor in the progression of non-small cell lung cancer. J Cell Biochem. 2018. doi:10.1002/jcb.27510
  • Vinson GP, Barker S, Puddefoot JR. The renin-angiotensin system in the breast and breast cancer. Endocr Relat Cancer. 2012;19(1):R1–R19. doi:10.1530/erc-11-033522180497
  • Suganuma T, Ino K, Shibata K, et al. Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clin Cancer Re. 2005;11(7):2686–2694. doi:10.1158/1078-0432.ccr-04-1946
  • Kinoshita J, Fushida S, Harada S, et al. Local angiotensin II-generation in human gastric cancer: correlation with tumor progression through the activation of ERK1/2, NF-kappaB and survivin. Int J Oncol. 2009;34(6):1573–1582. doi:10.3892/ijo_0000028719424575
  • Salgia R, Stille JR, Weaver RW, et al. A randomized Phase II study of LY2510924 and carboplatin/etoposide versus carboplatin/etoposide in extensive‐disease small cell lung cancer. Lung Cancer. 2017;105:7–13. doi:10.1016/j.lungcan.2016.12.02028236984
  • Macaluso M, Montanari M, Giordano A. The regulation of ER-alpha transcription by pRb2/p130 in breast cancer. Ann Oncol. 2005;16 Suppl 4:iv20–iv22. doi:10.1093/annonc/mdi90315923424
  • Ahn JS, Ahn YC, Kim JH, et al. Multinational randomized Phase III trial with or without consolidation chemotherapy using docetaxel and cisplatin after concurrent chemoradiation in inoperable Stage III non-small-cell lung cancer: KCSG-LU05-04. J Clin Oncol. 2015;33(24):2660–2666. doi:10.1200/jco.2014.60.013026150444
  • Mirandola L, Wade R, Verma R, et al. Sex-driven differences in immunological responses: challenges and opportunities for the immunotherapies of the third millennium. Int Rev Immunol. 2015;34(2):134–142. doi:10.3109/08830185.2015.101841725901858
  • Bang YJ, Golan T, Dahan L, et al. Ramucirumab and durvalumab for previously treated, advanced non-small-cell lung cancer, gastric/gastro-oesophageal junction adenocarcinoma, or hepatocellular carcinoma: an open-label, phase Ia/b study (JVDJ). Eur j Cancer. 2020;137:272–284. doi:10.1016/j.ejca.2020.06.00732827847
  • Wennhold K, Shimabukuro-Vornhagen A, von Bergwelt-baildon M. B cell-based cancer immunotherapy. Transfus Med Hemother. 2019;46(1):36–46. doi:10.1159/00049616631244580
  • Stankovic B, Bjørhovde HAK, Skarshaug R, et al. Immune cell composition in human non-small cell lung cancer. Front Immunol. 2018;9:3101. doi:10.3389/fimmu.2018.0310130774636
  • Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116(16):e74–e80. doi:10.1182/blood-2010-02-25855820628149
  • Movahedi K, Laoui D, Gysemans C, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 2010;70(14):5728–5739. doi:10.1158/0008-5472.can-09-467220570887
  • Yeap WH, Wong KL, Shimasaki N, et al. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci Rep. 2016;6:34310. doi:10.1038/srep3431027670158
  • Hartwig T, Montinaro A, von Karstedt S, et al. The TRAIL-induced cancer secretome promotes a tumor-supportive immune microenvironment via CCR2. Mol Cell. 2017;65(4):730.e5–742.e5. doi:10.1016/j.molcel.2017.01.021
  • Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol. 2012;22(4):275–281. doi:10.1016/j.semcancer.2012.01.01122313874
  • Cheng HW, Chen YF, Wong JM, et al. Cancer cells increase endothelial cell tube formation and survival by activating the PI3K/Akt signalling pathway. J Exp Clin Cancer Res. 2017;36(1):27. doi:10.1186/s13046-017-0495-328173828
  • Xu PZ, Chen ML, Jeon SM, Peng XD, Hay N. The effect Akt2 deletion on tumor development in Pten(±) mice. Oncogene. 2012;31(4):518–526. doi:10.1038/onc.2011.24321743498
  • Saji M, Narahara K, McCarty SK, et al. Akt1 deficiency delays tumor progression, vascular invasion, and distant metastasis in a murine model of thyroid cancer. Oncogene. 2011;30(42):4307–4315. doi:10.1038/onc.2011.13621532616
  • Zhao J, Yang T, Ji J, Zhao F, Li C, Han X. RHPN1-AS1 promotes cell proliferation and migration via miR-665/Akt3 in ovarian cancer. Cancer Gene Ther. 2021;28(1–2):33–41. doi:10.1038/s41417-020-0180-032457485
  • Qi YJ, Zha WJ, Zhang W. MicroRNA-217 alleviates development of non-small cell lung cancer by inhibiting AKT3 via PI3K pathway. Eur Rev Med Pharmacol Sci. 2018;22(18):5972–5979. doi:10.26355/eurrev_201809_1592830280779
  • Sung JS, Park KH, Kim ST, Kim YH. Discovery and evaluation of polymorphisms in the AKT2 and AKT3 promoter regions for risk of Korean lung cancer. Genomics Inform. 2012;10(3):167–174. doi:10.5808/gi.2012.10.3.16723166527
  • Linnerth-Petrik NM, Santry LA, Petrik JJ, Wootton SK. Opposing functions of Akt isoforms in lung tumor initiation and progression. PLoS One. 2014;9(4):e94595. doi:10.1371/journal.pone.009459524722238