221
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Serum Untargeted UHPLC-HRMS-Based Lipidomics to Discover the Potential Biomarker of Colorectal Advanced Adenoma

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 8865-8878 | Published online: 26 Nov 2021

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249.33538338
  • Miyamoto Y, Muguruma N, Fujimoto S, et al. Epidermal growth factor receptor-targeted molecular imaging of colorectal tumors: detection and treatment evaluation of tumors in animal models. Cancer Sci. 2019;110:1921–1930.30973663
  • Randrian V, Evrard C, Tougeron D. Microsatellite instability in colorectal cancers: carcinogenesis, neo-antigens, immuno-resistance and emerging therapies. Cancers. 2021;13:3063.34205397
  • Liu T, Peng F, Yu J, et al. LC-MS-based lipid profile in colorectal cancer patients: tAGs are the main disturbed lipid markers of colorectal cancer progression. Anal Bioanal Chem. 2019;411:5079–5088. doi:10.1007/s00216-019-01872-531201454
  • Aepli P, Criblez D, Baumeler S, et al. Endoscopic full thickness resection (EFTR) of colorectal neoplasms with the Full Thickness Resection Device (FTRD): clinical experience from two tertiary referral centers in Switzerland. United Eur Gastroenterol J. 2018;6:463–470. doi:10.1177/2050640617728001
  • Tehranian S, Klinge M, Saul M, et al. Prevalence of colorectal cancer and advanced adenoma in patients with acute diverticulitis: implications for follow-up colonoscopy. Gastrointest Endosc. 2020;91:634–640. doi:10.1016/j.gie.2019.08.04431521778
  • Click B, Pinsky PF, Hickey T, et al. Association of colonoscopy adenoma findings with long-term colorectal cancer incidence. JAMA. 2018;319:2021–2031. doi:10.1001/jama.2018.580929800214
  • Song EM, Park B, Ha CA, et al. Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model. Sci Rep. 2020;10:30. doi:10.1038/s41598-019-56697-031913337
  • Taylor DP, Cannon-Albright LA, Sweeney C, et al. Comparison of compliance for colorectal cancer screening and surveillance by colonoscopy based on risk. Genetics Med. 2011;13:737–743. doi:10.1097/GIM.0b013e3182180c7121555945
  • Bibbins-Domingo K, Grossman DC, Curry SJ, et al. Screening for colorectal cancer: US preventive services task force recommendation statement. JAMA. 2016;315:2564–2575. doi:10.1001/jama.2016.598927304597
  • Imperiale TF, Gruber RN, Stump TE, et al. Performance characteristics of fecal immunochemical tests for colorectal cancer and advanced adenomatous polyps: a systematic review and meta-analysis. Ann Intern Med. 2019;170:319–329. doi:10.7326/M18-239030802902
  • Mojtabanezhad Shariatpanahi A, Yassi M, Nouraie M, et al. The importance of stool DNA methylation in colorectal cancer diagnosis: a meta-analysis. PLoS One. 2018;13:e0200735. doi:10.1371/journal.pone.020073530024936
  • van Keulen KE, Jansen ME, Schrauwen RWM, et al. Volatile organic compounds in breath can serve as a non-invasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer. Aliment Pharmacol Ther. 2020;51:334–346. doi:10.1111/apt.1562231858615
  • Wang H, Zhang B, Li X, et al. Identification and validation of novel serum autoantibody biomarkers for early detection of colorectal cancer and advanced adenoma. Front Oncol. 2020;10:1081. doi:10.3389/fonc.2020.0108132793472
  • Meng W, Zhu HH, Xu ZF, et al. Serum M2-pyruvate kinase: a promising non-invasive biomarker for colorectal cancer mass screening. World J Gastrointest Oncol. 2012;4:145–151. doi:10.4251/wjgo.v4.i6.14522737276
  • Wu CW, Ng SC, Dong Y, et al. Identification of microRNA-135b in stool as a potential noninvasive biomarker for colorectal cancer and adenoma. Clin Cancer Res. 2014;20:2994–3002. doi:10.1158/1078-0432.CCR-13-175024691020
  • Gimeno-García AZ, Triñanes J, Quintero E, et al. Plasma matrix metalloproteinase 9 as an early surrogate biomarker of advanced colorectal neoplasia. Gastroenterol Hepatol. 2016;39:433–441. doi:10.1016/j.gastrohep.2015.10.00226601990
  • Suehiro Y, Hashimoto S, Higaki S, et al. Blood free-circulating DNA testing by highly sensitive methylation assay to diagnose colorectal neoplasias. Oncotarget. 2018;9:16974–16987. doi:10.18632/oncotarget.2476829682198
  • Junca A, Tachon G, Evrard C, et al. Detection of Colorectal Cancer and Advanced Adenoma by Liquid Biopsy (Decalib Study): the ddPCR Challenge. Cancers. 2020;12:1482.
  • Toiyama Y, Takahashi M, Hur K, et al. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst. 2013;105:849–859. doi:10.1093/jnci/djt10123704278
  • Pan Z, Miao L. Serum microRNA-592 serves as a novel potential biomarker for early diagnosis of colorectal cancer. Oncol Lett. 2020;20:1119–1126. doi:10.3892/ol.2020.1168232724351
  • Gao P, Zhou C, Zhao L, et al. Tissue amino acid profile could be used to differentiate advanced adenoma from colorectal cancer. J Pharm Biomed Anal. 2016;118:349–355. doi:10.1016/j.jpba.2015.11.00726595283
  • Song M, Mehta RS, Wu K, et al. Plasma inflammatory markers and risk of advanced colorectal adenoma in women. Cancer Prev Res. 2016;9:27–34. doi:10.1158/1940-6207.CAPR-15-0307
  • Davenport JR, Cai Q, Ness RM, et al. Evaluation of pro-inflammatory markers plasma C-reactive protein and urinary prostaglandin-E2 metabolite in colorectal adenoma risk. Mol Carcinog. 2016;55:1251–1261. doi:10.1002/mc.2236726333108
  • Grunt TW. Interacting cancer machineries: cell signaling, lipid metabolism, and epigenetics. Trends Endocrinol Metab. 2018;29:86–98. doi:10.1016/j.tem.2017.11.00329203141
  • Bhadwal P, Dahiya D, Shinde D, et al. LC-HRMS based approach to identify novel sphingolipid biomarkers in breast cancer patients. Sci Rep. 2020;10:4668. doi:10.1038/s41598-020-61283-w32170160
  • Wang Y, Hinz S, Uckermann O, et al. Shotgun lipidomics-based characterization of the landscape of lipid metabolism in colorectal cancer. Biochimica et biophysica acta. 2020;1865:158579. doi:10.1016/j.bbalip.2019.15857931794862
  • Kim M, Vogtmann E, Ahlquist DA, et al. Fecal metabolomic signatures in colorectal adenoma patients are associated with gut microbiota and early events of colorectal cancer pathogenesis. mBio. 2020;11:e03186–19.32071266
  • Cubiella J, Clos-Garcia M, Alonso C, et al. Targeted UPLC-MS metabolic analysis of human faeces reveals novel low-invasive candidate markers for colorectal cancer. Cancers. 2018;10:300.
  • Yang MH, Rampal S, Sung J, et al. The association of serum lipids with colorectal adenomas. Am J Gastroenterol. 2013;108:833–841. doi:10.1038/ajg.2013.6423545715
  • Coppola JA, Shrubsole MJ, Cai Q, et al. Plasma lipid levels and colorectal adenoma risk. Cancer Causes Control. 2015;26:635–643. doi:10.1007/s10552-015-0555-y25761410
  • Pu S, Liu Y, Liang S, et al. The metabolic changes of artesunate and ursolic acid on Syrian golden hamsters fed with the high-fat diet. Molecules (Basel, Switzerland). 2020;25(6):1392. doi:10.3390/molecules25061392
  • Liu T, Tan Z, Yu J, et al. A conjunctive lipidomic approach reveals plasma ethanolamine plasmalogens and fatty acids as early diagnostic biomarkers for colorectal cancer patients. Expert Rev Proteomics. 2020;17:233–242. doi:10.1080/14789450.2020.175744332306783
  • Shen S, Yang L, Li L, et al. A plasma lipidomics strategy reveals perturbed lipid metabolic pathways and potential lipid biomarkers of human colorectal cancer. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1068-1069:41–48. doi:10.1016/j.jchromb.2017.10.004
  • Cubiella J, Clos-Garcia M, Alonso C, et al. Targeted UPLC-MS metabolic analysis of human faeces reveals novel low-invasive candidate markers for colorectal cancer. Cancers. 2018;10(9):300. doi:10.3390/cancers10090300
  • Cho E, Willett WC, Colditz GA, et al. Dietary choline and betaine and the risk of distal colorectal adenoma in women. J Natl Cancer Inst. 2007;99:1224–1231. doi:10.1093/jnci/djm08217686825
  • Guo Y, Ren J, Li X, et al. Simultaneous quantification of serum multi-phospholipids as potential biomarkers for differentiating different pathophysiological states of lung, stomach, intestine, and pancreas. J Cancer. 2017;8:2191–2204. doi:10.7150/jca.1912828819421
  • Zhao Z, Xiao Y, Elson P, et al. Plasma lysophosphatidylcholine levels: potential biomarkers for colorectal cancer. J clin Oncol. 2007;25:2696–2701. doi:10.1200/JCO.2006.08.557117602074
  • Li S, Guo B, Song J, et al. Plasma choline-containing phospholipids: potential biomarkers for colorectal cancer progression. Metabolomics. 2013;9:202–212. doi:10.1007/s11306-012-0439-z
  • Joo EJ, Weyers A, Li G, et al. Carbohydrate-containing molecules as potential biomarkers in colon cancer. Omics. 2014;18:231–241. doi:10.1089/omi.2013.012824502776
  • Yi M, Li J, Chen S, et al. Emerging role of lipid metabolism alterations in Cancer stem cells. J Exp Clin Cancer Res. 2018;37:118. doi:10.1186/s13046-018-0784-529907133
  • Crotti S, Agnoletto E, Cancemi G, et al. Altered plasma levels of decanoic acid in colorectal cancer as a new diagnostic biomarker. Anal Bioanal Chem. 2016;408:6321–6328. doi:10.1007/s00216-016-9743-127379390
  • Pickens CA, Lane-Elliot A, Comstock SS, et al. Altered saturated and monounsaturated plasma phospholipid fatty acid profiles in adult males with colon adenomas. Cancer Epidemiol Biomark Prev. 2016;25:498–506. doi:10.1158/1055-9965.EPI-15-0696
  • Li F, Qin X, Chen H, et al. Lipid profiling for early diagnosis and progression of colorectal cancer using direct-infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrometry. 2013;27:24–34. doi:10.1002/rcm.6420
  • Kim BC, Shin A, Hong CW, et al. Association of colorectal adenoma with components of metabolic syndrome. Cancer Causes Control. 2012;23:727–735. doi:10.1007/s10552-012-9942-922450737
  • Tian Y, Wang K, Li J, et al. The association between serum lipids and colorectal neoplasm: a systemic review and meta-analysis. Public Health Nutr. 2015;18:3355–3370. doi:10.1017/S136898001500064625776573
  • McKeown-Eyssen G. Epidemiology of colorectal cancer revisited: are serum triglycerides and/or plasma glucose associated with risk? Cancer Epidemiol Biomark Prev. 1994;3:687–695.
  • Xie C, Wen P, Su J, et al. Elevated serum triglyceride and low-density lipoprotein cholesterol promotes the formation of colorectal polyps. BMC Gastroenterol. 2019;19:195. doi:10.1186/s12876-019-1115-931752704