134
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Prognostic Significance of CCNB2 Expression in Triple-Negative Breast Cancer

ORCID Icon, , ORCID Icon, , , ORCID Icon, & show all
Pages 9477-9487 | Published online: 31 Dec 2021

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.2166033538338
  • Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health. 2019;9:217–222. doi:10.2991/jegh.k.191008.00131854162
  • Li H, Sun X, Miller E, et al. BMI, reproductive factors, and breast cancer molecular subtypes: a case-control study and meta-analysis. J Epidemiol. 2017;27:143–151. doi:10.1016/j.je.2016.05.00228142040
  • Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–1948. doi:10.1056/NEJMra100138921067385
  • Zhou S, Sun X, Yu L, et al. Differential expression and clinical significance of epithelial-mesenchymal transition markers among different histological types of triple-negative breast cancer. J Cancer. 2018;9:604–613. doi:10.7150/jca.1919029483966
  • Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2013;41:D991–D995. doi:10.1093/nar/gks119323193258
  • Wang Y, Li H, Ma J, et al. Integrated bioinformatics data analysis reveals prognostic significance of SIDT1 in triple-negative breast cancer. Onco Targets Ther. 2019;12:8401–8410. doi:10.2147/OTT.S21589831632087
  • Stark C, Breitkreutz BJ, Reguly T, et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006;34:D535–D539. doi:10.1093/nar/gkj10916381927
  • Li T, Wernersson R, Hansen RB, et al. A scored human protein–protein interaction network to catalyze genomic interpretation. Nat Methods. 2017;14:61–64. doi:10.1038/nmeth.408327892958
  • Rhodes DR, Yu J, Shanker K, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6(1):1–6. doi:10.1016/s1476-5586(04)80047-215068665
  • Wörmann B. Breast cancer: basics, screening, diagnostics and treatment. Med Monatsschr Pharm. 2017;40:55–64.29952495
  • Camorani S, Fedele M, Zannetti A, et al. TNBC challenge: oligonucleotide aptamers for new imaging and therapy modalities. Pharmaceuticals. 2018;11:123. doi:10.3390/ph11040123
  • Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov. 2019;9:176–198. doi:10.1158/2159-8290.CD-18-117730679171
  • Qian X, Song X, He Y, et al. CCNB2 overexpression is a poor prognostic biomarker in Chinese NSCLC patients. Biomed Pharmacother. 2015;74:222–227. doi:10.1016/j.biopha.2015.08.00426349989
  • Mo ML, Chen Z, Li J, et al. Use of serum circulating CCNB2 in cancer surveillance. Int J Biol Markers. 2010;25:236–242. doi:10.5301/JBM.2010.608821161946
  • Gao CL, Wang GW, Yang GQ, et al. Karyopherin subunit-α 2 expression accelerates cell cycle progression by upregulating CCNB2 and CDK1 in hepatocellular carcinoma. Oncol Lett. 2018;15:2815–2820. doi:10.3892/ol.2017.769129435009
  • Jackman M, Firth M, Pines J. Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus. EMBO J. 1995;14:1646–1654. doi:10.1002/j.1460-2075.1995.tb07153.x7737117
  • Fischer M, Quaas M, Steiner L, et al. The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes. Nucleic Acids Res. 2016;44:164–174. doi:10.1093/nar/gkv92726384566
  • Li J, Ouyang YC, Zhang CH, et al. The cyclin B2/CDK1 complex inhibits separase activity in mouse oocyte meiosis I. Development. 2019;146:dev182519. doi:10.1242/dev.18251931704793
  • Roskoski R Jr. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol Res. 2019;139:471–488. doi:10.1016/j.phrs.2018.11.03530508677
  • Li M, Jiang X, Su T, et al. Metformin suppresses proliferation and viability of rat pheochromocytoma cells. Med Sci Monit. 2017;23:3253–3260. doi:10.12659/msm.90334828675758
  • Zhang HP, Li SY, Wang JP, et al. Clinical significance and biological roles of cyclins in gastric cancer. Onco Targets Ther. 2018;11:6673–6685. doi:10.2147/OTT.S17171630349301
  • Shubbar E, Kovács A, Hajizadeh S, et al. Elevated cyclin B2 expression in invasive breast carcinoma is associated with unfavorable clinical outcome. BMC Cancer. 2013;13:1. doi:10.1186/1471-2407-13-123282137
  • De Martino I, Visone R, Wierinckx A, et al. HMGA proteins up-regulate CCNB2 gene in mouse and human pituitary adenomas. Cancer Res. 2009;69:1844–1850. doi:10.1158/0008-5472.CAN-08-413319223528
  • Qian D, Zheng W, Chen C, et al. Roles of CCNB2 and NKX3-1 in nasopharyngeal carcinoma. Cancer Biother Radiopharm. 2020;35:208–213. doi:10.1089/cbr.2019.301632202926
  • Ikeya A, Nakashima M, Yamashita M, et al. CCNB2 and AURKA overexpression may cause atypical mitosis in Japanese cortisol-producing adrenocortical carcinoma with TP53 somatic variant. PLoS One. 2020;15:e0231665. doi:10.1371/journal.pone.023166532287321