261
Views
7
CrossRef citations to date
0
Altmetric
REVIEW

Management of Progressive Radioiodine-Refractory Thyroid Carcinoma: Current Perspective

, ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 3047-3062 | Published online: 27 Nov 2023

References

  • Baloch ZW, Asa SL, Barletta JA., et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol. 2022;33(1):27–63. doi:10.1007/s12022-022-09707-3
  • Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91(8):2892–2899. doi:10.1210/jc.2005-2838
  • Fugazzola L, Elisei R, Fuhrer D, et al. 2019 European Thyroid Association Guidelines for the Treatment and Follow-Up of Advanced Radioiodine-Refractory Thyroid Cancer. Eur Thyroid J. 2019;8(5):227–245. doi:10.1159/000502229
  • Karapanou O, Simeakis G, Vlassopoulou B, Alevizaki M, Saltiki K. Advanced RAI-refractory thyroid cancer: an update on treatment perspectives. Endocr Relat Cancer. 2022;29(5):R57–R66. doi:10.1530/ERC-22-0006
  • Tuttle RM, Ahuja S, Avram AM, et al. Controversies, Consensus, and Collaboration in the Use of 131I Therapy in Differentiated Thyroid Cancer: a Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid. 2019;29(4):461–470.
  • Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1–133. doi:10.1089/thy.2015.0020
  • Pacini F, Basolo F, Bellantone R, et al. Italian consensus on diagnosis and treatment of differentiated thyroid cancer: joint statements of six Italian societies. J Endocrinol Invest. 2018;41(7):849–876. doi:10.1007/s40618-018-0884-2
  • Brose MS, Nutting CM, Jarzab B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319–328. doi:10.1016/S0140-6736(14)60421-9
  • Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–630. doi:10.1056/NEJMoa1406470
  • Berdelou A, Borget I, Godbert Y, et al. Lenvatinib for the Treatment of Radioiodine-Refractory Thyroid Cancer in Real-Life Practice. Thyroid. 2018;28(1):72–78. doi:10.1089/thy.2017.0205
  • Locati LD, Piovesan A, Durante C, et al. Real-world efficacy and safety of lenvatinib: data from a compassionate use in the treatment of radioactive iodine-refractory differentiated thyroid cancer patients in Italy. Eur J Cancer. 2019;118:35–40. doi:10.1016/j.ejca.2019.05.031
  • Filetti S, Durante C, Hartl D, et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(12):1856–1883. doi:10.1093/annonc/mdz400
  • Fukuda N, Toda K, Udagawa S, et al. A proposed clinical scoring system for initiation of lenvatinib treatment in radioiodine-refractory thyroid cancer patients. Endocrine. 2022;76(1):70–77. doi:10.1007/s12020-021-02963-z
  • Matrone A, Campopiano MC, Nervo A, Sapuppo G, Tavarelli M, De Leo S. Differentiated Thyroid Cancer, From Active Surveillance to Advanced Therapy: toward a Personalized Medicine. Front Endocrinol (Lausanne). 2020;10:884. doi:10.3389/fendo.2019.00884
  • Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–247. doi:10.1016/j.ejca.2008.10.026
  • Sabra MM, Sherman EJ, Tuttle RM. Tumor volume doubling time of pulmonary metastases predicts overall survival and can guide the initiation of multikinase inhibitor therapy in patients with metastatic, follicular cell-derived thyroid carcinoma. Cancer. 2017;123(15):2955–2964. doi:10.1002/cncr.30690
  • Kiyota N, Tahara M, Robinson B, et al. Impact of baseline tumor burden on overall survival in patients with radioiodine-refractory differentiated thyroid cancer treated with lenvatinib in the SELECT global phase 3 trial. Cancer. 2022;128(12):2281–2287. doi:10.1002/cncr.34181
  • Tahara M, Kiyota N, Hoff AO, et al. Impact of lung metastases on overall survival in the phase 3 SELECT study of lenvatinib in patients with radioiodine-refractory differentiated thyroid cancer. Eur J Cancer. 2021;147:51–57. doi:10.1016/j.ejca.2020.12.032
  • Wirth LJ, Durante C, Topliss DJ, et al. Lenvatinib for the Treatment of Radioiodine-Refractory Differentiated Thyroid Cancer: treatment Optimization for Maximum Clinical Benefit. Oncologist. 2022;27(7):565–572. doi:10.1093/oncolo/oyac065
  • Zampella E, Klain M, Pace L, Cuocolo A. PET/CT in the management of differentiated thyroid cancer. Diagn Interv Imaging. 2021;102(9):515–523. doi:10.1016/j.diii.2021.04.004
  • Leboulleux S, Schroeder PR, Busaidy NL, et al. Assessment of the incremental value of recombinant thyrotropin stimulation before 2-[18F]-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging to localize residual differentiated thyroid cancer. J Clin Endocrinol Metab. 2009;94(4):1310–1316. doi:10.1210/jc.2008-1747
  • Miyauchi A, Kudo T, Miya A, et al. Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid. 2011;21(7):707–716. doi:10.1089/thy.2010.0355
  • Gay S, Raffa S, De’Luca Di Pietralata A, et al. 2-[18F]FDG PET in the Management of Radioiodine Refractory Differentiated Thyroid Cancer in the Era of Thyrosin-Kinases Inhibitors: a Real-Life Retrospective Study. Diagnostics. 2022;12(2):506. doi:10.3390/diagnostics12020506
  • Taylor MH, Takahashi S, Capdevila J, et al. Correlation of Performance Status and Neutrophil-Lymphocyte Ratio with Efficacy in Radioiodine-Refractory Differentiated Thyroid Cancer Treated with Lenvatinib. Thyroid. 2021;31(8):1226–1234. doi:10.1089/thy.2020.0779
  • Fukuda N, Wang X, Ohmoto A, et al. Sequential Analysis of Neutrophil-to-lymphocyte Ratio for Differentiated Thyroid Cancer Patients Treated With Lenvatinib. In Vivo (Brooklyn). 2020;34(2):709–714. doi:10.21873/invivo.11828
  • Dalmiglio C, Brilli L, Campanile M, et al. CONUT Score: a New Tool for Predicting Prognosis in Patients with Advanced Thyroid Cancer Treated with TKI. Cancers. 2022;14(3):724. doi:10.3390/cancers14030724
  • Paschke R, Schlumberger M, Elisei R. Prognostic and predictive factors correlated with treatment outcomes for radioactive iodine-refractory differentiated thyroid cancer (RAI-RDTC) patients receiving Sorafenib or placebo on the Phase III decision trial. Exp Clin Endocrinol Diabetes. 2015. doi:10.1055/s-0035-1547604
  • Yamazaki H, Sugino K, Matsuzu K, et al. Sarcopenia is a prognostic factor for TKIs in metastatic thyroid carcinomas. Endocrine. 2020;68(1):132–137. doi:10.1007/s12020-019-02162-x
  • Huillard O, Jouinot A, Tlemsani C, et al. Body Composition in Patients with Radioactive Iodine-Refractory, Advanced Differentiated Thyroid Cancer Treated with Sorafenib or Placebo: a Retrospective Analysis of the Phase III DECISION Trial. Thyroid. 2019;29(12):1820–1827. doi:10.1089/thy.2018.0784
  • De Leo S, Colombo C, Di Stefano M, et al. Body Composition and Leptin/Ghrelin Levels during Lenvatinib for Thyroid Cancer. Eur Thyroid J. 2020;9(1):1–10. doi:10.1159/000504048
  • Agate L, Minaldi E, Basolo A, et al. Nutrition in Advanced Thyroid Cancer Patients. Nutrients. 2022;14(6):1298. doi:10.3390/nu14061298
  • Colombo C, De Leo S, Trevisan M, Giancola N, Scaltrito A, Fugazzola L. Daily Management of Patients on Multikinase Inhibitors’ Treatment. Front Oncol. 2022;12. doi:10.3389/fonc.2022.903532
  • Gillis C, Li C, Lee L, et al. Prehabilitation versus rehabilitation: a randomized control trial in patients undergoing colorectal resection for cancer. Anesthesiology. 2014;121(5):937–947. doi:10.1097/ALN.0000000000000393
  • Giordano TJ. Genomic Hallmarks of Thyroid Neoplasia. Annu Rev Pathol. 2018;13:141–162. doi:10.1146/annurev-pathol-121808-102139
  • Filetti S, Durante C, Hartl DM, et al. ESMO Clinical Practice Guideline update on the use of systemic therapy in advanced thyroid cancer. Ann Oncol. 2022;33(7):674–684. doi:10.1016/j.annonc.2022.04.009
  • Moore A, Bar Y, Maurice-Dror C, et al. Next-generation sequencing in thyroid cancers: do targetable alterations lead to a therapeutic advantage?: a multicenter experience. Medicine. 2021;100(25):e26388. doi:10.1097/MD.0000000000026388
  • Capdevila J, Newbold K, Licitra L, et al. Optimisation of treatment with lenvatinib in radioactive iodine-refractory differentiated thyroid cancer. Cancer Treat Rev. 2018;69:164–176. doi:10.1016/j.ctrv.2018.06.019
  • Cabanillas ME, Takahashi S. Managing the adverse events associated with lenvatinib therapy in radioiodine-refractory differentiated thyroid cancer. Semin Oncol. 2019;46(1):57–64. doi:10.1053/j.seminoncol.2018.11.004
  • Nervo A, Ragni A, Retta F, et al. Bone metastases from differentiated thyroid carcinoma: current knowledge and open issues. J Endocrinol Invest. 2021;44(3):403–419. doi:10.1007/s40618-020-01374-7
  • Demura S, Kawahara N, Murakami H, et al. Total en bloc spondylectomy for spinal metastasis in thyroid carcinoma. J Neurosurg Spine. 2011;14(2):172–176. doi:10.3171/2010.9.SPINE09878
  • Osborne JR, Kondraciuk JD, Rice SL, et al. Thyroid Cancer Brain Metastasis: survival and Genomic Characteristics of a Large Tertiary Care Cohort. Clin Nucl Med. 2019;44(7):544–549. doi:10.1097/RLU.0000000000002618
  • Paspala A, Kostakis ID, Gaitanidis A, Prodromidou A, Schizas D, Machairas N. Long-Term Outcomes After Hepatic and Pancreatic Resections for Metastases from Thyroid Cancer: a Systematic Review of the Literature. J Gastrointest Cancer. 2019;50(1):9–15. doi:10.1007/s12029-018-00196-4
  • Fanous AA, Prasad D, Mathieu D, Fabiano AJ. Intracranial stereotactic radiosurgery. J Neurosurg Sci. 2019;63(1):61–82. doi:10.23736/S0390-5616.17.04210-2
  • Bunevicius A, Fribance S, Pikis S, et al. Stereotactic Radiosurgery for Differentiated Thyroid Cancer Brain Metastases: an International, Multicenter Study. Thyroid. 2021;31(8):1244–1252. doi:10.1089/thy.2020.0947
  • Dunne EM, Fraser IM, Liu M. Stereotactic body radiation therapy for lung, spine and oligometastatic disease: current evidence and future directions. Ann Transl Med. 2018;6(14):283. doi:10.21037/atm.2018.06.40
  • Lancellotta V, Fanetti G, Monari F, et al. Stereotactic radiotherapy (SRT) for differentiated thyroid cancer (DTC) oligometastases: an AIRO (Italian association of radiotherapy and clinical oncology) systematic review. Radiol Med. 2022;127(6):681–689. doi:10.1007/s11547-022-01489-2
  • Ishigaki T, Uruno T, Tanaka T, et al. Usefulness of Stereotactic Radiotherapy Using the CyberKnife for Patients with Inoperable Locoregional Recurrences of Differentiated Thyroid Cancer. World J Surg. 2019;43(2):513–518. doi:10.1007/s00268-018-4813-5
  • Mazziotti G, Formenti AM, Panarotto MB, et al. Real-life management and outcome of thyroid carcinoma-related bone metastases: results from a nationwide multicenter experience. Endocrine. 2018;59(1):90–101. doi:10.1007/s12020-017-1455-6
  • Mauri G, Hegedüs L, Bandula S, et al. European Thyroid Association and Cardiovascular and Interventional Radiological Society of Europe 2021 Clinical Practice Guideline for the Use of Minimally Invasive Treatments in Malignant Thyroid Lesions. Eur Thyroid J. 2021;10(3):185–197. doi:10.1159/000516469
  • Nervo A, Ragni A, Retta F, et al. Interventional Radiology Approaches for Liver Metastases from Thyroid Cancer: a Case Series and Overview of the Literature. J Gastrointest Cancer. 2021;52(3):823–832. doi:10.1007/s12029-021-00646-6
  • Muresan MM, Olivier P, Leclère J, et al. Bone metastases from differentiated thyroid carcinoma. Endocr Relat Cancer. 2008;15:37–49. doi:10.1677/ERC-07-0229
  • Kushchayeva YS, Kushchayev SV, Carroll NM, et al. Spinal metastases due to thyroid carcinoma: an analysis of 202 patients. Thyroid. 2014;24:1488–1500. doi:10.1089/thy.2013.0633
  • Lang BHH, Wong KP, Cheung CY, Wan KY, Lo CY. Evaluating the prognostic factors associated with cancer-specific survival of differentiated thyroid carcinoma presenting with distant metastasis. Ann Surg Oncol. 2013;20:1329–1335. doi:10.1245/s10434-012-2711-x
  • Choi YM, Kim WG, Kwon H, et al. Early prognostic factors at the time of diagnosis of bone metastasis in patients with bone metastases of differentiated thyroid carcinoma. Eur J Endocrinol. 2016;175:165–172. doi:10.1530/EJE-16-0237
  • Lin JD, Lin SF, Chen ST, Hsueh C, Li CL, Chao TC. Long-term follow-up of papillary and follicular thyroid carcinomas with bone metastasis. PLoS One. 2017;12:e0173354. doi:10.1371/journal.pone.0173354
  • Pittas AG, Adler M, Fazzari M, Larson SM, Robbins RJ, Rosai J. Bone metastases from thyroid carcinoma: clinical characteristics and prognostic variables in one hundred forty-six patients. Thyroid. 2000;10:261–268. doi:10.1089/thy.2000.10.261
  • Slook O, Levy S, Slutzky-Shraga I, et al. Long-term outcomes and prognostic factors in patients with differentiated thyroid carcinoma and bone metastases. Endocr Pract. 2019;25:427–437. doi:10.4158/EP-2018-0465
  • Farooki A, Leung V, Tala H, Tuttle RM. Skeletal-related events due to bone metastases from differentiated thyroid cancer. J Clin Endocrinol Metab. 2012;97:2433–2439. doi:10.1210/jc.2012-1169
  • Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350:1655–1664. doi:10.1056/NEJMra030831
  • Kohno N, Aogi K, Minami H, et al. Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. J Clin Oncol. 2005;23:3314–3321. doi:10.1200/JCO.2005.05.116
  • Saad F, Gleason DM, Murray R, et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst. 2002;94:1458–1468. doi:10.1093/jnci/94.19.1458
  • Stopeck AT, Lipton A, Body JJ, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28:5132–5139. doi:10.1200/JCO.2010.29.7101
  • Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377:813–822.
  • Zheng GZ, Chang B, Lin FX, et al. Meta-analysis comparing denosumab and zoledronic acid for treatment of bone metastases in patients with advanced solid tumours. Eur J Cancer Care. 2017;26(6):e1254. doi:10.1111/ecc.12541
  • Raje N, Terpos E, Willenbacher W, et al. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: an international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet Oncol. 2018;19:370–381. doi:10.1016/S1470-2045(18)30072-X
  • Qi WX, Tang LN, He AN, Yao Y, Shen Z. Risk of osteonecrosis of the jaw in cancer patients receiving denosumab: a meta-analysis of seven randomized controlled trials. Int J Clin Oncol. 2014;19(2):403–410. doi:10.1007/s10147-013-0561-6
  • Wexler JA. Approach to the thyroid cancer patient with bone metastases. J Clin Endocrinol Metab. 2011;96(8):2296–2307. doi:10.1210/jc.2010-1996
  • Henry DH, Costa L, Goldwasser F, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29:1125–1132. doi:10.1200/JCO.2010.31.3304
  • Shane E, Burr D, Abrahamsen B, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2014;29:1–23. doi:10.1002/jbmr.1998
  • Olson K, Van Poznak C. Significance and impact of bisphosphonate-induced acute phase responses. J Oncol Pharm Pract. 2007;13:223–229. doi:10.1177/1078155207080806
  • Perazella MA, Markowitz GS. Bisphosphonate nephrotoxicity. Kidney Int. 2008;74:1385–1393. doi:10.1038/ki.2008.356
  • Cummings SR, Ferrari S, Eastell R, et al. Vertebral Fractures After Discontinuation of Denosumab: a Post Hoc Analysis of the Randomized Placebo-Controlled FREEDOM Trial and Its Extension. J Bone Miner Res. 2018;33:190–198. doi:10.1002/jbmr.3337
  • Amadori D, Aglietta M, Alessi B, et al. Efficacy and safety of 12-weekly versus 4-weekly zoledronic acid for prolonged treatment of patients with bone metastases from breast cancer (ZOOM): a phase 3, open-label, randomised, non-inferiority trial. Lancet Oncol. 2013;14:663–670. doi:10.1016/S1470-2045(13)70174-8
  • Hortobagyi GN, Van Poznak C, Harker WG, et al. Continued Treatment Effect of Zoledronic Acid Dosing Every 12 vs 4 Weeks in Women With Breast Cancer Metastatic to Bone: the OPTIMIZE-2 Randomized Clinical Trial. JAMA Oncol. 2017;3:906. doi:10.1001/jamaoncol.2016.6316
  • Himelstein AL, Foster JC, Khatcheressian JL, et al. Effect of Longer-Interval vs Standard Dosing of Zoledronic Acid on Skeletal Events in Patients With Bone Metastases: a Randomized Clinical Trial. JAMA. 2017;317:48–58. doi:10.1001/jama.2016.19425
  • Templeton AJ, Stalder L, Bernhard J, et al. Prevention of symptomatic skeletal events with denosumab administered every 4 weeks versus every 12 weeks: a noninferiority phase III trial (SAKK 96/12, REDUSE). J Clin Oncol. 2014;1:32.
  • Clemons MJ, Ong M, Stober C, et al. A randomized trial comparing four-weekly versus 12-weekly administration of bone-targeted agents (denosumab, zoledronate, or pamidronate) in patients with bone metastases from either breast or castration-resistant prostate cancer. J Clin Oncol. 2019;37:11501. doi:10.1200/JCO.2019.37.15_suppl.11501
  • Vitale G, Fonderico F, Martignetti A, et al. Pamidronate improves the quality of life and induces clinical remission of bone metastases in patients with thyroid cancer. Br J Cancer. 2001;84:1586–1590. doi:10.1054/bjoc.2001.1832
  • Orita Y, Sugitani I, Toda K, Manabe J, Fujimoto Y. Zoledronic acid in the treatment of bone metastases from differentiated thyroid carcinoma. Thyroid. 2011;21(1):31–35104, 105. doi:10.1089/thy.2010.0169
  • Orita Y, Sugitani I, Takao S, Toda K, Manabe J, Miyata S. Prospective evaluation of zoledronic acid in the treatment of bone metastases from differentiated thyroid carcinoma. Ann Surg Oncol. 2015;22:4008–4013. doi:10.1245/s10434-015-4497-0
  • van Cann T, Loyson T, Verbiest A, et al. Incidence of medication-related osteonecrosis of the jaw in patients treated with both bone resorption inhibitors and vascular endothelial growth factor receptor tyrosine kinase inhibitors. Support Care Cancer. 2018;26:869–878. doi:10.1007/s00520-017-3903-5
  • Wenchao L, Qixiang G, Zhuo M, Lihong L, Zhao Z. Lenvatinib and osteonecrosis of the jaw: a pharmacovigilance study. Eur J Cancer. 2021;150:211–213. doi:10.1016/j.ejca.2021.03.046
  • Study of the Efficacy of Lenvatinib Combined With Denosumab in the Treatment of Patients With Predominant Bone Metastatic Radioiodine Refractory Differentiated Thyroid Carcinomas (LENVOS) - NCT03732495.
  • Lorusso L, Pieruzzi L, Gabriele M, et al. Osteonecrosis of the jaw: a rare but possible side effect in thyroid cancer patients treated with tyrosine-kinase inhibitors and bisphosphonates. J Endocrinol Invest. 2021;44(12):2557–2566. doi:10.1007/s40618-021-01634-0
  • Robinson B, Schlumberger M, Wirth LJ, et al. Characterization of Tumor Size Changes Over Time From the Phase 3 Study of Lenvatinib in Thyroid Cancer. J Clin Endocrinol Metab. 2016;101(11):4103–4109. doi:10.1210/jc.2015-3989
  • Gianoukakis AG, Dutcus CE, Batty N, Guo M, Baig M. Prolonged duration of response in lenvatinib responders with thyroid cancer. Endocr Relat Cancer. 2018;25(6):699–704. doi:10.1530/ERC-18-0049
  • Werner RA, Lückerath K, Schmid JS, et al. Thyroglobulin fluctuations in patients with iodine-refractory differentiated thyroid carcinoma on lenvatinib treatment - initial experience. Sci Rep. 2016;6:28081. doi:10.1038/srep28081
  • Brose MS, Worden FP, Newbold KL, et al. Effect of Age on the Efficacy and Safety of Lenvatinib in Radioiodine-Refractory Differentiated Thyroid Cancer in the Phase III SELECT Trial. J Clin Oncol. 2017;35(23):2692–2699. doi:10.1200/JCO.2016.71.6472
  • Valerio L, Guidoccio F, Giani C, et al. [18F]-FDG-PET/CT Correlates With the Response of Radiorefractory Thyroid Cancer to Lenvatinib and Patient Survival. J Clin Endocrinol Metab. 2021;106(8):2355–2366. doi:10.1210/clinem/dgab278
  • Li L, Cheng L, Sa R, Qiu X, Chen L. Real-world insights into the efficacy and safety of tyrosine kinase inhibitors against thyroid cancers. Crit Rev Oncol Hematol. 2022;172:103624. doi:10.1016/j.critrevonc.2022.103624
  • Brose MS, Panaseykin Y, Konda B, et al. A Randomized Study of Lenvatinib 18 mg vs 24 mg in Patients With Radioiodine-Refractory Differentiated Thyroid Cancer. J Clin Endocrinol Metab. 2022;107(3):776–787. doi:10.1210/clinem/dgab731
  • Schlumberger M, Nutting C, Jarzab B, et al. Exploratory analysis of outcomes for patients with locally advanced or metastatic radioactive iodine-refractory differentiated thyroid cancer (RAIRDTC) receiving open-label sorafenib postprogression on the phase III DECISION trial. Abstract OP87. Presented at European Thyroid Congress; 2014.
  • Felicetti F, Nervo A, Piovesan A, et al. Tyrosine kinase inhibitors rechallenge in solid tumors: a review of literature and a case description with lenvatinib in thyroid cancer. Expert Rev Anticancer Ther. 2017;17(12):1093–1098. doi:10.1080/14737140.2017.1390432
  • Brose MS, Robinson B, Sherman SI, et al. Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2021;22(8):1126–1138. doi:10.1016/S1470-2045(21)00332-6
  • National Cancer Institute. Common terminology criteria for adverse events (CTCAE) version 4.03. Available from: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf., 2010. Accessed Jul 15, 2022.
  • Wirth LJ, Tahara M, Robinson B, et al. Treatment-emergent hypertension and efficacy in the phase 3 Study of (E7080) lenvatinib in differentiated cancer of the thyroid (SELECT). Cancer. 2018;124(11):2365–2372. doi:10.1002/cncr.31344
  • Haddad RI, Schlumberger M, Wirth LJ, et al. Incidence and timing of common adverse events in Lenvatinib-treated patients from the SELECT trial and their association with survival outcomes. Endocrine. 2017;56(1):121–128. doi:10.1007/s12020-017-1233-5
  • Colombo C, De Leo S, Di Stefano M, et al. Primary Adrenal Insufficiency During Lenvatinib or Vandetanib and Improvement of Fatigue After Cortisone Acetate Therapy. J Clin Endocrinol Metab. 2019;104(3):779–784. doi:10.1210/jc.2018-01836
  • Nervo A, Ragni A, Gallo M, et al. Symptomatic Biliary Disorders During Lenvatinib Treatment for Thyroid Cancer: an Underestimated Problem. Thyroid. 2020;30(2):229–236. doi:10.1089/thy.2019.0355
  • Tahara M, Brose MS, Wirth LJ, et al. Impact of dose interruption on the efficacy of lenvatinib in a phase 3 study in patients with radioiodine-refractory differentiated thyroid cancer. Eur J Cancer. 2019;106:61–68. doi:10.1016/j.ejca.2018.10.002
  • Schlumberger M, Jarzab B, Elisei R, et al. Phase III randomized, double-blinded, placebo controlled trial of sorafenib in locally advanced or metastatic patients with radioactive iodine (RAI)-refractory differentiated thyroid cancer (DTC) - exploratory analyses of patient-reported outcomes. Presented at Annual Meeting of the American Thyroid Association; 2013.
  • Nervo A, Ragni A, Piovesan A, et al. Quality of Life during Treatment with Lenvatinib for Thyroid Cancer: the Patients’ Perspective beyond the Medical Evaluation. Eur Thyroid J. 2021;10(1):65–71. doi:10.1159/000508186
  • Giani C, Valerio L, Bongiovanni A, et al. Safety and Quality-of-Life Data from an Italian Expanded Access Program of Lenvatinib for Treatment of Thyroid Cancer. Thyroid. 2021;31(2):224–232. doi:10.1089/thy.2020.0276
  • Yakushina VD, Lerner LV, Lavrov AV. Gene Fusions in Thyroid Cancer. Thyroid. 2018;28(2):158–167. doi:10.1089/thy.2017.0318
  • Pekova B, Sykorova V, Mastnikova K, et al. NTRK Fusion Genes in Thyroid Carcinomas: clinicopathological Characteristics and Their Impacts on Prognosis. Cancers. 2021;13(8):1932. doi:10.3390/cancers13081932
  • Wirth LJ, Sherman E, Robinson B, et al. Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N Engl J Med. 2020;383(9):825–835. doi:10.1056/NEJMoa2005651
  • Subbiah V, Hu MI, Wirth LJ, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol. 2021;9(8):491–501. doi:10.1016/S2213-8587(21)00120-0
  • Lorusso L, Cappagli V, Valerio L, et al. Thyroid Cancers: from Surgery to Current and Future Systemic Therapies through Their Molecular Identities. Int J Mol Sci. 2021;22(6):3117. doi:10.3390/ijms22063117
  • Hong DS, DuBois SG, Kummar S, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020;21(4):531–540. doi:10.1016/S1470-2045(19)30856-3
  • Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020;21(2):271–282. doi:10.1016/S1470-2045(19)30691-6
  • Waguespack SG, Drilon A, Lin JJ, et al. Efficacy and safety of larotrectinib in patients with TRK fusion-positive thyroid carcinoma. Eur J Endocrinol. 2022;186(6):631–643. doi:10.1530/EJE-21-1259
  • Bazhenova L, Liu SV, Lin JJ, et al. Efficacy and safety of entrectinib in patients with locally advanced/metastatic NTRK fusion-positive (NTRK-fp) solid tumours. Annals of Oncology. 2021;32(suppl_5):S583–S620. doi:10.1016/annonc/annonc699
  • Bruce JY, Bible KC, Chintakuntlawar AV. Emergence of Resistant Clones in Medullary Thyroid Cancer May Not Be Rescued by Subsequent Salvage Highly Selective Rearranged During Transfection-Inhibitor Therapy. Thyroid. 2021;31(2):332–333. doi:10.1089/thy.2020.0449
  • Lamartina L, Anizan N, Dupuy C, et al. Redifferentiation-facilitated radioiodine therapy in thyroid cancer. Endocr Relat Cancer. 2021;28(10):T179–T191. doi:10.1530/ERC-21-0024
  • Ho AL, Grewal RK, Leboeuf R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–632. doi:10.1056/NEJMoa1209288
  • Rothenberg SM, McFadden DG, Palmer EL, et al. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res. 2015;21(5):1028–1035. doi:10.1158/1078-0432.CCR-14-2915
  • Dunn LA, Sherman EJ, Baxi SS, et al. Vemurafenib Redifferentiation of BRAF Mutant, RAI-Refractory Thyroid Cancers. J Clin Endocrinol Metab. 2019;104(5):1417–1428.
  • Pešorda M, Kusačić Kuna S, Huić D, et al. Kinase Inhibitors in the Treatment of Thyroid Cancer: institutional Experience. Acta Clin Croat. 2020;59(Suppl 1):73–80. doi:10.20471/acc.2020.59.s1.09
  • Jaber T, Waguespack SG, Cabanillas ME, et al. Targeted Therapy in Advanced Thyroid Cancer to Resensitize Tumors to Radioactive Iodine. J Clin Endocrinol Metab. 2018;103(10):3698–3705. doi:10.1210/jc.2018-00612
  • Iravani A, Solomon B, Pattison DA, et al. Mitogen-Activated Protein Kinase Pathway Inhibition for Redifferentiation of Radioiodine Refractory Differentiated Thyroid Cancer: an Evolving Protocol. Thyroid. 2019;29(11):1634–1645. doi:10.1089/thy.2019.0143
  • Leboulleux S, Dupuy C, Lacroix L, et al. Redifferentiation of a BRAFK601E-Mutated Poorly Differentiated Thyroid Cancer Patient with Dabrafenib and Trametinib Treatment. Thyroid. 2019;29(5):735–742.
  • Weber M, Kersting D, Riemann B, et al. Enhancing Radioiodine Incorporation Into Radio Iodine Refractory Thyroid Cancer With MAPK Inhibition (ERRITI): a Single-Center Prospective Two-Arm Study. Clin Cancer Res. 2022;28(19):4194–4202. doi:10.1158/1078-0432.CCR-22-0437
  • Adam P, Kircher S, Sbiera I, et al. FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated Thyroid Cancer: evaluation of the Preclinical Rationale. Front Endocrinol (Lausanne). 2021;12:712107. doi:10.3389/fendo.2021.712107
  • Bastman JJ, Serracino HS, Zhu Y, et al. Tumor-Infiltrating T Cells and the PD-1 Checkpoint Pathway in Advanced Differentiated and Anaplastic Thyroid Cancer. J Clin Endocrinol Metab. 2016;101(7):2863–2873. doi:10.1210/jc.2015-4227
  • Cameselle-García S, Abdulkader-Sande S, Sánchez-Ares M, et al. PD-L1 expression and immune cells in anaplastic carcinoma and poorly differentiated carcinoma of the human thyroid gland: a retrospective study. Oncol Lett. 2021;22(1):553. doi:10.3892/ol.2021.12814
  • Rosenbaum MW, Gigliotti BJ, Pai SI, et al. PD-L1 and IDO1 Are Expressed in Poorly Differentiated Thyroid Carcinoma. Endocr Pathol. 2018;29(1):59–67. doi:10.1007/s12022-018-9514-y
  • Cunha LL, Ward LS. Translating the immune microenvironment of thyroid cancer into clinical practice. Endocr Relat Cancer. 2022;29(6):R67–R83. doi:10.1530/ERC-21-0414
  • Mehnert JMVA, Brose M, Aggarwal R, et al. Pembrolizumab for advanced papillary or follicular thyroid Cancer: preliminary results from the phase 1b KEYNOTE-028 study. J Clin Oncol. 2016;34(2):548. doi:10.1200/JCO.2016.34.15_suppl.6091
  • Dierks C, Seufert J, Aumann K, et al. Combination of Lenvatinib and Pembrolizumab Is an Effective Treatment Option for Anaplastic and Poorly Differentiated Thyroid Carcinoma. Thyroid. 2021;31(7):1076–1085. doi:10.1089/thy.2020.0322
  • Iyer PC, Dadu R, Gule-Monroe M, et al. Salvage pembrolizumab added to kinase inhibitor therapy for the treatment of anaplastic thyroid carcinoma. J Immunother Cancer. 2018;6(1):68. doi:10.1186/s40425-018-0378-y