629
Views
8
CrossRef citations to date
0
Altmetric
Review

Application of Artificial Intelligence for Nasopharyngeal Carcinoma Management – A Systematic Review

ORCID Icon, , , , , , , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 339-366 | Published online: 26 Jan 2022

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Ferlay J, Ervik M, Lam F, et al. Global cancer observatory: cancer today; 2020. Available from: https://gco.iarc.fr/today. Accessed June 4, 2021.
  • Lee AWM, Ma BBY, Ng WT, Chan ATC. Management of nasopharyngeal carcinoma: current practice and future perspective. J Clin Oncol. 2015;33(29):3356–3364. doi:10.1200/JCO.2015.60.9347
  • Chan JW, Parvathaneni U, Yom SS. Reducing radiation-related morbidity in the treatment of nasopharyngeal carcinoma. Future Oncology. 2017;13(5):425–431. doi:10.2217/fon-2016-0410
  • Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020;111(5):1452–1460. doi:10.1111/cas.14377
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi:10.1136/bmj.n71
  • Whiting PF, Rutjes AWS, Westwood ME. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–536. doi:10.7326/0003-4819-155-8-201110180-00009
  • Luo W, Phung D, Tran T, et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res. 2016;18(12):e323. doi:10.2196/jmir.5870
  • Alabi RO, Youssef O, Pirinen M, et al. Machine learning in oral squamous cell carcinoma: current status, clinical concerns and prospects for future—A systematic review. Artif Intell Med. 2021;115:102060. doi:10.1016/j.artmed.2021.102060
  • Wang HQ, Zhu HL, Cho WCS, Yip TTC, Ngan RKC, Law SCK. Method of regulatory network that can explore protein regulations for disease classification. Artif Intell Med. 2010;48(2):119–127. doi:10.1016/j.artmed.2009.07.011
  • Aussem A, de Morais SR, Corbex M. Analysis of nasopharyngeal carcinoma risk factors with Bayesian networks. Artif Intell Med. 2012;54(1):53–62. doi:10.1016/j.artmed.2011.09.002
  • Kumdee O, Bhongmakapat T, Ritthipravat P. Prediction of nasopharyngeal carcinoma recurrence by neuro-fuzzy techniques. Fuzzy Sets Syst. 2012;203:95–111. doi:10.1016/j.fss.2012.03.004
  • Ritthipravat P, Kumdee O, Bhongmakap T. Efficient missing data technique for prediction of nasopharyngeal carcinoma recurrence. Inf Technol J. 2013;12:1125–1133. doi:10.3923/itj.2013.1125.1133
  • Jiang R, You R, Pei X-Q, et al. Development of a ten-signature classifier using a support vector machine integrated approach to subdivide the M1 stage into M1a and M1b stages of nasopharyngeal carcinoma with synchronous metastases to better predict patients’ survival. Oncotarget. 2016;7(3):3645–3657. doi:10.18632/oncotarget.6436
  • Li C, Jing B, Ke L, et al. Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies. Cancer Commun. 2018;38(1):59. doi:10.1186/s40880-018-0325-9
  • Mohammed MA, Abd Ghani MK, Arunkumar N, Mostafa SA, Abdullah MK, Burhanuddin MA. Trainable model for segmenting and identifying Nasopharyngeal carcinoma. Comput Electr Eng. 2018;71:372–387. doi:10.1016/j.compeleceng.2018.07.044
  • Jing B, Zhang T, Wang Z, et al. A deep survival analysis method based on ranking. Artif Intell Med. 2019;98:1–9. doi:10.1016/j.artmed.2019.06.001
  • Ma Z, Zhou S, Wu X, et al. Nasopharyngeal carcinoma segmentation based on enhanced convolutional neural networks using multi-modal metric learning. Phys Med Biol. 2019;64(2):025005. doi:10.1088/1361-6560/aaf5da
  • Peng H, Dong D, Fang M-J, et al. Prognostic value of deep learning PET/CT-based radiomics: potential role for future individual induction chemotherapy in advanced nasopharyngeal carcinoma. Clin Cancer Res. 2019;25(14):4271–4279. doi:10.1158/1078-0432.CCR-18-3065
  • Rehioui H, Idrissi A. On the use of clustering algorithms in medical domain. Int J Artifi Intell. 2019;17:236.
  • Zou M, Hu J, Zhang H, et al. Rigid medical image registration using learning-based interest points and features. Comput Mater Continua. 2019;60(2):511–525. doi:10.32604/cmc.2019.05912
  • Chen H, Qi Y, Yin Y, et al. MMFNet: a multi-modality MRI fusion network for segmentation of nasopharyngeal carcinoma. Neurocomputing. 2020;394:27–40. doi:10.1016/j.neucom.2020.02.002
  • Chuang W-Y, Chang S-H, Yu W-H, et al. Successful identification of nasopharyngeal carcinoma in nasopharyngeal biopsies using deep learning. Cancers (Basel). 2020;12(2):507. doi:10.3390/cancers12020507
  • Guo F, Shi C, Li X, Wu X, Zhou J, Lv J. Image segmentation of nasopharyngeal carcinoma using 3D CNN with long-range skip connection and multi-scale feature pyramid. Soft Comput. 2020;24(16):12671–12680. doi:10.1007/s00500-020-04708-y
  • Jing B, Deng Y, Zhang T, et al. Deep learning for risk prediction in patients with nasopharyngeal carcinoma using multi-parametric MRIs. Comput Methods Programs Biomed. 2020;197:105684. doi:10.1016/j.cmpb.2020.105684
  • Mohammed MA, Abd Ghani MK, Arunkumar N, et al. Decision support system for nasopharyngeal carcinoma discrimination from endoscopic images using artificial neural network. J Supercomput. 2020;76(2):1086–1104. doi:10.1007/s11227-018-2587-z
  • Wang J, Liu R, Zhao Y, et al. A predictive model of radiation-related fibrosis based on the radiomic features of magnetic resonance imaging and computed tomography. Transl Cancer Res. 2020;9(8):4726–4738. doi:10.21037/tcr-20-751
  • Yang Q, Guo Y, Ou X, Wang J, Hu C. Automatic T staging using weakly supervised deep learning for nasopharyngeal carcinoma on MR images. Journal of Magnetic Resonance Imaging. 2020;52(4):1074–1082. doi:10.1002/jmri.27202
  • Zhong L-Z, Fang X-L, Dong D, et al. A deep learning MR-based radiomic nomogram may predict survival for nasopharyngeal carcinoma patients with stage T3N1M0. Radiother Oncol. 2020;151:1–9. doi:10.1016/j.radonc.2020.06.050
  • Bai X, Hu Y, Gong G, Yin Y, Xia Y. A deep learning approach to segmentation of nasopharyngeal carcinoma using computed tomography. Biomed Signal Process. 2021;64:102246. doi:10.1016/j.bspc.2020.102246
  • Cai M, Wang J, Yang Q, et al. Combining images and t-staging information to improve the automatic segmentation of nasopharyngeal carcinoma tumors in MR images. IEEE Access. 2021;9:21323–21331. doi:10.1109/ACCESS.2021.3056130
  • Tang P, Zu C, Hong M, et al. DA-DSUnet: dual attention-based dense SU-net for automatic head-and-neck tumor segmentation in MRI images. Neurocomputing. 2021;435:103–113. doi:10.1016/j.neucom.2020.12.085
  • Zhang L, Wu X, Liu J, et al. MRI-based deep-learning model for distant metastasis-free survival in locoregionally advanced Nasopharyngeal carcinoma. J Magn Reson Imaging. 2021;53(1):167–178. doi:10.1002/jmri.27308
  • Wu X, Dong D, Zhang L, et al. Exploring the predictive value of additional peritumoral regions based on deep learning and radiomics: a multicenter study. Med Phys. 2021;48(5):2374–2385. doi:10.1002/mp.14767
  • Zhao L, Gong J, Xi Y, et al. MRI-based radiomics nomogram may predict the response to induction chemotherapy and survival in locally advanced nasopharyngeal carcinoma. Eur Radiol. 2020;30(1):537–546. doi:10.1007/s00330-019-06211-x
  • Zhang F, Zhong L-Z, Zhao X, et al. A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study. Ther Adv Med Oncol. 2020;12:1758835920971416. doi:10.1177/1758835920971416
  • Xie C, Du R, Ho JWK, et al. Effect of machine learning re-sampling techniques for imbalanced datasets in 18F-FDG PET-based radiomics model on prognostication performance in cohorts of head and neck cancer patients. Eur J Nucl Med Mol Imaging. 2020;47(12):2826–2835. doi:10.1007/s00259-020-04756-4
  • Liu K, Xia W, Qiang M, et al. Deep learning pathological microscopic features in endemic nasopharyngeal cancer: prognostic value and protentional role for individual induction chemotherapy. Cancer Med. 2020;9(4):1298–1306. doi:10.1002/cam4.2802
  • Cui C, Wang S, Zhou J, et al. Machine learning analysis of image data based on detailed MR image reports for nasopharyngeal carcinoma prognosis. Biomed Res Int. 2020;2020:8068913. doi:10.1155/2020/8068913
  • Du R, Lee VH, Yuan H, et al. Radiomics model to predict early progression of nonmetastatic nasopharyngeal carcinoma after intensity modulation radiation therapy: a multicenter study. Radiology. 2019;1(4):e180075. doi:10.1148/ryai.2019180075
  • Zhang B, Tian J, Dong D, et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma. Clin Cancer Res. 2017;23(15):4259–4269. doi:10.1158/1078-0432.CCR-16-2910
  • Zhang B, He X, Ouyang F, et al. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett. 2017;403:21–27. doi:10.1016/j.canlet.2017.06.004
  • Liu J, Mao Y, Li Z, et al. Use of texture analysis based on contrast-enhanced MRI to predict treatment response to chemoradiotherapy in nasopharyngeal carcinoma. J Magn Reson Imaging. 2016;44(2):445–455.
  • Zhu W, Kan X, Calogero RA. Neural network cascade optimizes MicroRNA biomarker selection for nasopharyngeal cancer prognosis. PLoS One. 2014;9(10):e110537. doi:10.1371/journal.pone.0110537
  • Wong LM, Ai QYH, Mo FKF, Poon DMC, King AD. Convolutional neural network in nasopharyngeal carcinoma: how good is automatic delineation for primary tumor on a non-contrast-enhanced fat-suppressed T2-weighted MRI? Jpn J Radiol. 2021;39(6):571–579. doi:10.1007/s11604-021-01092-x
  • Xue X, Qin N, Hao X, et al. Sequential and iterative auto-segmentation of high-risk clinical target volume for radiotherapy of nasopharyngeal carcinoma in planning CT images. Front Oncol. 2020;10:1134. doi:10.3389/fonc.2020.01134
  • Men K, Chen X, Zhu J, et al. Continual improvement of nasopharyngeal carcinoma segmentation with less labeling effort. Phys Med. 2020;80:347–351. doi:10.1016/j.ejmp.2020.11.005
  • Wang X, Yang G, Zhang Y, et al. Automated delineation of nasopharynx gross tumor volume for nasopharyngeal carcinoma by plain CT combining contrast-enhanced CT using deep learning. J Radiat Res Appl Sci. 2020;13(1):568–577. doi:10.1080/16878507.2020.1795565
  • Ke L, Deng Y, Xia W, et al. Development of a self-constrained 3D DenseNet model in automatic detection and segmentation of nasopharyngeal carcinoma using magnetic resonance images. Oral Oncol. 2020;110:104862. doi:10.1016/j.oraloncology.2020.104862
  • Zhong T, Huang X, Tang F, Liang S, Deng X, Zhang Y. Boosting-based cascaded convolutional neural networks for the segmentation of CT organs-at-risk in nasopharyngeal carcinoma. Med Phys. 2019;46(12):5602–5611. doi:10.1002/mp.13825
  • Lin L, Dou Q, Jin Y-M, et al. Deep learning for automated contouring of primary tumor volumes by MRI for nasopharyngeal carcinoma. Radiology. 2019;291(3):677–686. doi:10.1148/radiol.2019182012
  • Liang S, Tang F, Huang X, et al. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Eur Radiol. 2019;29(4):1961–1967. doi:10.1007/s00330-018-5748-9
  • Li S, Xiao J, He L, Peng X, Yuan X. The tumor target segmentation of nasopharyngeal cancer in CT images based on deep learning methods. Technol Cancer Res Treat. 2019;18:1533033819884561. doi:10.1177/1533033819884561
  • Mohammed MA, Abd Ghani MK, Hamed RI, Ibrahim DA, Abdullah MK. Artificial neural networks for automatic segmentation and identification of nasopharyngeal carcinoma. J Comput Sci. 2017;21:263–274.
  • Men K, Chen X, Zhang Y, et al. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front Oncol. 2017;7:315. doi:10.3389/fonc.2017.00315
  • Wong LM, King AD, Ai QYH, et al. Convolutional neural network for discriminating nasopharyngeal carcinoma and benign hyperplasia on MRI. Eur Radiol. 2021;31(6):3856–3863. doi:10.1007/s00330-020-07451-y
  • Wen D-W, Lin L, Mao Y-P, et al. Normal tissue complication probability (NTCP) models for predicting temporal lobe injury after intensity-modulated radiotherapy in nasopharyngeal carcinoma: a large registry-based retrospective study from China. Radiother Oncol. 2021;157:99–105. doi:10.1016/j.radonc.2021.01.008
  • Zhang B, Lian Z, Zhong L, et al. Machine-learning based MRI radiomics models for early detection of radiation-induced brain injury in nasopharyngeal carcinoma. BMC Cancer. 2020;20(1):502. doi:10.1186/s12885-020-06957-4
  • Du D, Feng H, Lv W, et al. Machine learning methods for optimal radiomics-based differentiation between recurrence and inflammation: application to nasopharyngeal carcinoma post-therapy PET/CT images. Mol Imaging Biol. 2020;22(3):730–738. doi:10.1007/s11307-019-01411-9
  • Diao S, Hou J, Yu H, et al. Computer-aided pathologic diagnosis of nasopharyngeal carcinoma based on deep learning. Am J Pathol. 2020;190(8):1691–1700. doi:10.1016/j.ajpath.2020.04.008
  • Abd Ghani MK, Mohammed MA, Arunkumar N, et al. Decision-level fusion scheme for nasopharyngeal carcinoma identification using machine learning techniques. Neural Comput Appl. 2020;32(3):625–638. doi:10.1007/s00521-018-3882-6
  • Mohammed MA, Abd Ghani MK, Arunkumar N, Hamed RI, Abdullah MK, Burhanuddin MA. A real time computer aided object detection of nasopharyngeal carcinoma using genetic algorithm and artificial neural network based on Haar feature fear. Future Gener Comput Syst. 2018;89:539–547. doi:10.1016/j.future.2018.07.022
  • Wang Y-W, Wu C-S, Zhang G-Y, et al. Can parameters other than minimal axial diameter in MRI and PET/CT further improve diagnostic accuracy for equivocal retropharyngeal lymph nodes in nasopharyngeal carcinoma? PLoS One. 2016;11(10):e0163741–e0163741. doi:10.1371/journal.pone.0163741
  • Bai P, Weng X, Quan K, et al. A knowledge-based intensity-modulated radiation therapy treatment planning technique for locally advanced nasopharyngeal carcinoma radiotherapy. Radiat Oncol. 2020;15(1):188. doi:10.1186/s13014-020-01626-z
  • Liu Z, Fan J, Li M, et al. A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy. Med Phys. 2019;46(5):1972–1983. doi:10.1002/mp.13490
  • Jiao S-X, Chen L-X, Zhu J-H, Wang M-L, Liu X-W. Prediction of dose-volume histograms in nasopharyngeal cancer IMRT using geometric and dosimetric information. Phys Med Biol. 2019;64(23):23NT04. doi:10.1088/1361-6560/ab50eb
  • Yang X, Li X, Zhang X, Song F, Huang S, Xia Y. Segmentation of organs at risk in nasopharyngeal cancer for radiotherapy using a self-adaptive Unet network. Nan Fang Yi Ke Da Xue Xue Bao. 2020;40(11):1579–1586. doi:10.12122/j.issn.1673-4254.2020.11.07
  • Chen X, Yang J, Yi J, Dai J. Quality control of VMAT planning using artificial neural network models for nasopharyngeal carcinoma. Chin J Radiol Med Prot. 2020;40(2):99–105.
  • Xue X, Hao X, Shi J, Ding Y, Wei W, An H. Auto-segmentation of high-risk primary tumor gross target volume for the radiotherapy of nasopharyngeal carcinoma. J Image Graph. 2020;25(10):2151–2158.
  • Rizwan I, Haque I, Neubert J. Deep learning approaches to biomedical image segmentation. Inf Med Unlocked. 2020;18:100297. doi:10.1016/j.imu.2020.100297
  • Leclerc B, Cale J. Big Data. Milton, UK: Taylor & Francis Group; 2020.
  • Parisi GI, Kemker R, Part JL, Kanan C, Wermter S. Continual lifelong learning with neural networks: a review. Neural Netw. 2019;113:54–71. doi:10.1016/j.neunet.2019.01.012