208
Views
3
CrossRef citations to date
0
Altmetric
Original Research

LINC01232 Promotes Metastasis and EMT by Regulating miR-506-5p/PAK1 Axis in Gastric Cancer

, , , , , & show all
Pages 1729-1740 | Published online: 13 May 2022

References

  • Wei L, Sun J, Zhang N, et al. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol Cancer. 2020;19(1):62. doi:10.1186/s12943-020-01185-7
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Wei Z, Chen L, Meng L, Han W, Huang L, Xu A. LncRNA HOTAIR promotes the growth and metastasis of gastric cancer by sponging miR-1277-5p and upregulating COL5A1. Gastric Cancer. 2020;23(6):1018–1032. doi:10.1007/s10120-020-01091-3
  • Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. Cell. 2016;166(1):21–45. doi:10.1016/j.cell.2016.06.028
  • Bure IV, Nemtsova MV, Zaletaev DV. Roles of E-cadherin and noncoding RNAs in the epithelial-mesenchymal transition and progression in gastric cancer. Int J Mol Sci. 2019;20(12):2870. doi:10.3390/ijms20122870
  • Xu E, Xia X, Jiang C, et al. GPER1 silencing suppresses the proliferation, migration, and invasion of gastric cancer cells by inhibiting PI3K/AKT-Mediated EMT. Front Cell Dev Biol. 2020;8:591239. doi:10.3389/fcell.2020.591239
  • Cui H, Hu Y, Guo D, et al. DNA methyltransferase 3A isoform b contributes to repressing E-cadherin through cooperation of DNA methylation and H3K27/H3K9 methylation in EMT-related metastasis of gastric cancer. Oncogene. 2018;37(32):4358–4371. doi:10.1038/s41388-018-0285-1
  • Fabbri M, Girnita L, Varani G, Calin GA. Decrypting noncoding RNA interactions, structures, and functional networks. Genome Res. 2019;29(9):1377–1388. doi:10.1101/gr.247239.118
  • Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019;21(5):542–551. doi:10.1038/s41556-019-0311-8
  • Chen D, Ping S, Xu Y, et al. Non-coding RNAs in gastric cancer: from malignant hallmarks to clinical applications. Front Cell Dev Biol. 2021;9:732036. doi:10.3389/fcell.2021.732036
  • Yuan L, Xu ZY, Ruan SM, Mo S, Qin JJ, Cheng XD. Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance. Mol Cancer. 2020;19(1):96. doi:10.1186/s12943-020-01219-0
  • Liu ZQ, He WF, Wu YJ, et al. LncRNA SNHG1 promotes EMT process in gastric cancer cells through regulation of the miR-15b/DCLK1/Notch1 axis. BMC Gastroenterol. 2020;20(1):156. doi:10.1186/s12876-020-01272-5
  • Gong J, Wang Y, Shu C. LncRNA CHRF promotes cell invasion and migration via EMT in gastric cancer. Eur Rev Med Pharmacol Sci. 2020;24(3):1168–1176. doi:10.26355/eurrev_202002_20168
  • Li Q, Lei C, Lu C, Wang J, Gao M, Gao W. LINC01232 exerts oncogenic activities in pancreatic adenocarcinoma via regulation of TM9SF2. Cell Death Dis. 2019;10(10):698. doi:10.1038/s41419-019-1896-3
  • Meng LD, Shi GD, Ge WL, et al. Linc01232 promotes the metastasis of pancreatic cancer by suppressing the ubiquitin-mediated degradation of HNRNPA2B1 and activating the A-Raf-induced MAPK/ERK signaling pathway. Cancer Lett. 2020;494:107–120. doi:10.1016/j.canlet.2020.08.001
  • Guo L, Gao S, Sun W, Wang Y, Zhao J. Elevated LINC01232 is associated with poor prognosis and HBV infection in hepatocellular carcinoma patients and contributes to tumor progression in vitro. Clin Res Hepatol Gastroenterol. 2021;46:101813. doi:10.1016/j.clinre.2021.101813
  • Liu Q, Lei C. LINC01232 serves as a novel biomarker and promotes tumour progression by sponging miR-204-5p and upregulating RAB22A in clear cell renal cell carcinoma. Ann Med. 2021;53(1):2153–2164. doi:10.1080/07853890.2021.2001563
  • Liu J, Li Z, Yu G, Wang T, Qu G, Wang Y. LINC01232 promotes gastric cancer proliferation through interacting with EZH2 to inhibit the transcription of KLF2. J Microbiol Biotechnol. 2021;31(10):1358–1365. doi:10.4014/jmb.2106.06041
  • Zhao M, Cui H, Zhao B, Li M, Man H. Long intergenic noncoding RNA LINC01232 contributes to esophageal squamous cell carcinoma progression by sequestering microRNA6543p and consequently promoting hepatoma derived growth factor expression. Int J Mol Med. 2020;46(6):2007–2018. doi:10.3892/ijmm.2020.4750
  • Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393–407. doi:10.1016/j.cell.2018.01.011
  • Xiong G, Pan S, Jin J, et al. Long noncoding competing endogenous RNA networks in pancreatic cancer. Front Oncol. 2021;11:765216. doi:10.3389/fonc.2021.765216
  • Hu J, Huang L, Ding Q, Lv J, Chen Z. Long noncoding RNA HAGLR sponges miR-338-3p to promote 5-Fu resistance in gastric cancer through targeting the LDHA-glycolysis pathway. Cell Biol Int. 2021;46(2):173–184.
  • Landeros N, Santoro PM, Carrasco-Avino G, Corvalan AH. Competing endogenous RNA networks in the epithelial to mesenchymal transition in diffuse-type of gastric cancer. Cancers. 2020;12(10):2741. doi:10.3390/cancers12102741
  • Wang G, Zhang Z, Xia C. Long non-coding RNA LINC00240 promotes gastric cancer progression via modulating miR-338-5p/METTL3 axis. Bioengineered. 2021;12(2):9678–9691. doi:10.1080/21655979.2021.1983276
  • Ji Z, Tang T, Chen M, et al. C-Myc-activated long non-coding RNA LINC01050 promotes gastric cancer growth and metastasis by sponging miR-7161-3p to regulate SPZ1 expression. J Exp Clin Cancer Res. 2021;40(1):351. doi:10.1186/s13046-021-02155-7
  • Fang Y, Sun B, Gao J, Huang Y, Wang C. LncRNA SLCO4A1-AS1 accelerates growth and metastasis of gastric cancer via regulation of the miR-149/XIAP Axis. Front Oncol. 2021;11:683256. doi:10.3389/fonc.2021.683256
  • Li Z, Shi L, Li X, Wang X, Wang H, Liu Y. RNF144A-AS1, a TGF-beta1- and hypoxia-inducible gene that promotes tumor metastasis and proliferation via targeting the miR-30c-2-3p/LOX axis in gastric cancer. Cell Biosci. 2021;11(1):177. doi:10.1186/s13578-021-00689-z
  • An J, Guo X, Yan B. DICER-AS1 functions as competing endogenous RNA that targets CSR1 by sponging microRNA-650 and suppresses gastric cancer progression. J Int Med Res. 2021;49(9):3000605211041466. doi:10.1177/03000605211041466
  • Zheng YL, Song G, Guo JB, et al. Interactions among lncRNA/circRNA, miRNA, and mRNA in musculoskeletal degenerative diseases. Front Cell Dev Biol. 2021;9:753931. doi:10.3389/fcell.2021.753931
  • Deng K, Wang H, Guo X, Xia J. The cross talk between long, non-coding RNAs and microRNAs in gastric cancer. Acta Biochim Biophys Sin. 2016;48(2):111–116. doi:10.1093/abbs/gmv120
  • Chen Z, Zhong T, Li T, et al. LncRNA SNHG15 modulates gastric cancer tumorigenesis by impairing miR-506-5p expression. Biosci Rep. 2021;41(7). doi:10.1042/BSR20204177
  • Zhao J, Zeng XB, Zhang HY, Xiang JW, Liu YS. Long non-coding RNA FOXD2-AS1 promotes cell proliferation, metastasis and EMT in glioma by sponging miR-506-5p. Open Med. 2020;15(1):921–931. doi:10.1515/med-2020-0175
  • Liu F, Cheng Z, Li X, et al. A novel Pak1/ATF2/miR-132 signaling axis is involved in the hematogenous metastasis of gastric cancer cells. Mol Ther Nucleic Acids. 2017;8:370–382. doi:10.1016/j.omtn.2017.07.005
  • Cao F, Yin LX. PAK1 promotes proliferation, migration and invasion of hepatocellular carcinoma by facilitating EMT via directly up-regulating Snail. Genomics. 2020;112(1):694–702. doi:10.1016/j.ygeno.2019.05.002
  • Li X, Zhu J, Liu Y, Duan C, Chang R, Zhang C. MicroRNA-331-3p inhibits epithelial-mesenchymal transition by targeting ErbB2 and VAV2 through the Rac1/PAK1/beta-catenin axis in non-small-cell lung cancer. Cancer Sci. 2019;110(6):1883–1896. doi:10.1111/cas.14014
  • Lin XJ, He CL, Sun T, Duan XJ, Sun Y, Xiong SJ. hsa-miR-485-5p reverses epithelial to mesenchymal transition and promotes cisplatin-induced cell death by targeting PAK1 in oral tongue squamous cell carcinoma. Int J Mol Med. 2017;40(1):83–89. doi:10.3892/ijmm.2017.2992
  • Zhou Y, Fan RG, Qin CL, Jia J, Wu XD, Zha WZ. LncRNA-H19 activates CDC42/PAK1 pathway to promote cell proliferation, migration and invasion by targeting miR-15b in hepatocellular carcinoma. Genomics. 2019;111(6):1862–1872. doi:10.1016/j.ygeno.2018.12.009