134
Views
6
CrossRef citations to date
0
Altmetric
REVIEW

c-Met: A Promising Therapeutic Target in Bladder Cancer

, &
Pages 2379-2388 | Published online: 27 Nov 2023

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492
  • Luke C, Tracey E, Stapleton A, Roder D. Exploring contrary trends in bladder cancer incidence, mortality and survival: implications for research and cancer control. Intern Med J. 2010;40(5):357–362. doi:10.1111/j.1445-5994.2009.01980.x
  • Kamat AM, Hahn NM, Efstathiou JA, et al. Bladder cancer. Lancet. 2016;388(10061):2796–2810. doi:10.1016/S0140-6736(16)30512-8
  • Cooper CS, Park M, Blair DG, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311(5981):29–33. doi:10.1038/311029a0
  • Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12(2):89–103. doi:10.1038/nrc3205
  • Giordano S, Ponzetto C, Di Renzo MF, Cooper CS, Comoglio PM. Tyrosine kinase receptor indistinguishable from the c-Met protein. Nature. 1989;339(6220):155–156. doi:10.1038/339155a0
  • Ilangumaran S, Villalobos-Hernandez A, Bobbala D, Ramanathan S. The hepatocyte growth factor (HGF)-MET receptor tyrosine kinase signaling pathway: diverse roles in modulating immune cell functions. Cytokine. 2016;82:125–139. doi:10.1016/j.cyto.2015.12.013
  • Stamos J, Lazarus RA, Yao X, Kirchhofer D, Wiesmann C. Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. EMBO J. 2004;23(12):2325–2335. doi:10.1038/sj.emboj.7600243
  • Organ SL, Tsao MS. An overview of the c-Met signaling pathway. Ther Adv Med Oncol. 2011;3(1 Suppl):S7–S19. doi:10.1177/1758834011422556
  • Naldini L, Vigna E, Narsimhan RP, et al. Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-Met. Oncogene. 1991;6(4):501–504.
  • Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-Met proto-oncogene product. Science. 1991;251(4995):802–804. doi:10.1126/science.1846706
  • Nakamura T, Nawa K, Ichihara A. Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun. 1984;122(3):1450–1459. doi:10.1016/0006-291X(84)91253-1
  • Tamagnone L, Comoglio PM. Control of invasive growth by hepatocyte growth factor (HGF) and related scatter factors. Cytokine Growth Factor Rev. 1997;8(2):129–142. doi:10.1016/S1359-6101(97)00007-5
  • Weidner KM, Hartmann G, Naldini L, et al. Molecular characteristics of HGF-SF and its role in cell motility and invasion. Exs. 1993;65:311–328.
  • Heldin CH. Dimerization of cell surface receptors in signal transduction. Cell. 1995;80(2):213–223. doi:10.1016/0092-8674(95)90404-2
  • Hass R, Jennek S, Yang Y, Friedrich K. c-Met expression and activity in urogenital cancers - novel aspects of signal transduction and medical implications. CCS. 2017;15(1):10. doi:10.1186/s12964-017-0165-2
  • Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–925. doi:10.1038/nrm1261
  • Trovato M, Campenni A, Giovinazzo S, Siracusa M, Ruggeri RM. Hepatocyte growth factor/c-Met axis in thyroid cancer: from diagnostic biomarker to therapeutic target. Biomark Insights. 2017;12:1177271917701126. doi:10.1177/1177271917701126
  • Cui JJ. Targeting receptor tyrosine kinase MET in cancer: small molecule inhibitors and clinical progress. J Med Chem. 2014;57(11):4427–4453. doi:10.1021/jm401427c
  • Grugan KD, Vega ME, Wong GS, et al. A common p53 mutation (R175H) activates c-Met receptor tyrosine kinase to enhance tumor cell invasion. Cancer Biol Ther. 2013;14(9):853–859. doi:10.4161/cbt.25406
  • Muller PA, Trinidad AG, Timpson P, et al. Mutant p53 enhances MET trafficking and signaling to drive cell scattering and invasion. Oncogene. 2013;32(10):1252–1265. doi:10.1038/onc.2012.148
  • Liu X, Newton RC, Scherle PA. Development of c-Met pathway inhibitors. Expert Opin Investig Drugs. 2011;20(9):1225–1241. doi:10.1517/13543784.2011.600687
  • Tulasne D, Foveau B. The shadow of death on the MET tyrosine kinase receptor. Cell Death Differ. 2008;15(3):427–434. doi:10.1038/sj.cdd.4402229
  • Christensen JG, Burrows J, Salgia R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett. 2005;225(1):1–26. doi:10.1016/j.canlet.2004.09.044
  • Gumustekin M, Kargi A, Bulut G, et al. HGF/c-Met overexpressions, but not met mutation, correlates with progression of non-small cell lung cancer. Pathol Oncol Res. 2012;18(2):209–218. doi:10.1007/s12253-011-9430-7
  • Goyal L, Muzumdar MD, Zhu AX. Targeting the HGF/c-Met pathway in hepatocellular carcinoma. Clin Cancer Res. 2013;19(9):2310–2318. doi:10.1158/1078-0432.CCR-12-2791
  • Matsumoto R, Tsuda M, Wang L, et al. Adaptor protein CRK induces epithelial-mesenchymal transition and metastasis of bladder cancer cells through HGF/c-Met feedback loop. Cancer Sci. 2015;106(6):709–717. doi:10.1111/cas.12662
  • Inui M, Nishi N, Yasumoto A, et al. Enhanced gene expression of transforming growth factor-alpha and c-Met in rat urinary bladder cancer. Urol Res. 1996;24(1):55–60. doi:10.1007/BF00296735
  • Tamatani T, Hattori K, Iyer A, Tamatani K, Oyasu R. Hepatocyte growth factor is an invasion/migration factor of rat urothelial carcinoma cells in vitro. Carcinogenesis. 1999;20(6):957–962. doi:10.1093/carcin/20.6.957
  • Joseph A, Weiss GH, Jin L, et al. Expression of scatter factor in human bladder carcinoma. J Natl Cancer Inst. 1995;87(5):372–377. doi:10.1093/jnci/87.5.372
  • Rosen EM, Joseph A, Jin L, et al. Urinary and tissue levels of scatter factor in transitional cell carcinoma of bladder. J Urol. 1997;157(1):72–78. doi:10.1016/S0022-5347(01)65286-8
  • Millis SZ, Bryant D, Basu G, et al. Molecular profiling of infiltrating urothelial carcinoma of bladder and nonbladder origin. Clin Genitourin Cancer. 2015;13(1):e37–e49. doi:10.1016/j.clgc.2014.07.010
  • Iyer G, Al-Ahmadie H, Schultz N, et al. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J Clin Oncol. 2013;31(25):3133–3140. doi:10.1200/JCO.2012.46.5740
  • Lee YH, Apolo AB, Agarwal PK, Bottaro DP. Characterization of HGF/Met signaling in cell lines derived from urothelial carcinoma of the bladder. Cancers. 2014;6(4):2313–2329. doi:10.3390/cancers6042313
  • Parr C, Jiang WG. Expression of hepatocyte growth factor/scatter factor, its activator, inhibitors and the c-Met receptor in human cancer cells. Int J Oncol. 2001;19(4):857–863.
  • Yeh CY, Shin SM, Yeh HH, et al. Transcriptional activation of the Axl and PDGFR-alpha by c-Met through a ras- and Src-independent mechanism in human bladder cancer. BMC Cancer. 2011;11(1):139. doi:10.1186/1471-2407-11-139
  • Kim YW, Yun SJ, Jeong P, et al. The c-Met network as novel prognostic marker for predicting bladder cancer patients with an increased risk of developing aggressive disease. PLoS One. 2015;10(7):e0134552. doi:10.1371/journal.pone.0134552
  • Cheng HL, Trink B, Tzai TS, et al. Overexpression of c-met as a prognostic indicator for transitional cell carcinoma of the urinary bladder: a comparison with p53 nuclear accumulation. J Clin Oncol. 2002;20(6):1544–1550. doi:10.1200/JCO.2002.20.6.1544
  • Sanchez-Carbayo M, Socci ND, Lozano JJ, Haab BB, Cordon-Cardo C. Profiling bladder cancer using targeted antibody arrays. Am J Pathol. 2006;168(1):93–103. doi:10.2353/ajpath.2006.050601
  • Sim WJ, Iyengar PV, Lama D, et al. c-Met activation leads to the establishment of a TGFbeta-receptor regulatory network in bladder cancer progression. Nat Commun. 2019;10(1):4349. doi:10.1038/s41467-019-12241-2
  • Huff JL, Jelinek MA, Borgman CA, Lansing TJ, Parsons JT. The protooncogene c-sea encodes a transmembrane protein-tyrosine kinase related to the Met/hepatocyte growth factor/scatter factor receptor. Proc Natl Acad Sci U S A. 1993;90(13):6140–6144. doi:10.1073/pnas.90.13.6140
  • Lu TJ, Lu TL, Su IJ, Lai MD. Tyrosine kinase expression profile in bladder cancer. Anticancer Res. 1997;17(4a):2635–2637.
  • Cheng HL, Liu HS, Lin YJ, et al. Co-expression of RON and MET is a prognostic indicator for patients with transitional-cell carcinoma of the bladder. Br J Cancer. 2005;92(10):1906–1914. doi:10.1038/sj.bjc.6602593
  • Black PC, Brown GA, Inamoto T, et al. Sensitivity to epidermal growth factor receptor inhibitor requires E-cadherin expression in urothelial carcinoma cells. Clin Cancer Res. 2008;14(5):1478–1486. doi:10.1158/1078-0432.CCR-07-1593
  • Shieh YS, Lai CY, Kao YR, et al. Expression of axl in lung adenocarcinoma and correlation with tumor progression. Neoplasia. 2005;7(12):1058–1064. doi:10.1593/neo.05640
  • Choi YJ, Kim JH, Rho JK, et al. AXL and MET receptor tyrosine kinases are essential for lung cancer metastasis. Oncol Rep. 2017;37(4):2201–2208. doi:10.3892/or.2017.5482
  • Miyata Y, Sagara Y, Kanda S, Hayashi T, Kanetake H. Phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor growth and prognosis in patients with bladder cancer: correlation with matrix metalloproteinase-2 and −7 and E-cadherin. Hum Pathol. 2009;40(4):496–504. doi:10.1016/j.humpath.2008.09.011
  • Mukae Y, Miyata Y, Nakamura Y, et al. Pathological roles of c-Met in bladder cancer: association with cyclooxygenase-2, heme oxygenase-1, vascular endothelial growth factor-A and programmed death ligand 1. Oncol Lett. 2020;20(1):135–144. doi:10.3892/ol.2020.11540
  • Miyata Y, Asai A, Mitsunari K, et al. Met in urological cancers. Cancers. 2014;6(4):2387–2403. doi:10.3390/cancers6042387
  • Hofner T, Macher-Goeppinger S, Klein C, et al. Development and characteristics of preclinical experimental models for the research of rare neuroendocrine bladder cancer. J Urol. 2013;190(6):2263–2270. doi:10.1016/j.juro.2013.06.053
  • Yang B, Zhou L, Peng B, Sun Z, Dai Y, Zheng J. In vitro comparative evaluation of recombinant growth factors for tissue engineering of bladder in patients with neurogenic bladder. J Surg Res. 2014;186(1):63–72. doi:10.1016/j.jss.2013.07.044
  • Burgues O, Ferrer J, Navarro S, Ramos D, Botella E, Llombart-Bosch A. Hepatoid adenocarcinoma of the urinary bladder. Virchows Archiv. 1999;435(1):71–75. doi:10.1007/s004280050398
  • Li B, Kanamaru H, Noriki S, Fukuda M, Okada K. Differential expression of hepatocyte growth factor in papillary and nodular tumors of the bladder. Int J Urol. 1998;5(5):436–440. doi:10.1111/j.1442-2042.1998.tb00383.x
  • McNeil BK, Sorbellini M, Grubb RL 3rd, et al. Preliminary evaluation of urinary soluble Met as a biomarker for urothelial carcinoma of the bladder. J Transl Med. 2014;12:199. doi:10.1186/1479-5876-12-199
  • Yamamoto N, Mammadova G, Song RX, Fukami Y, Sato K. Tyrosine phosphorylation of p145met mediated by EGFR and Src is required for serum-independent survival of human bladder carcinoma cells. J Cell Sci. 2006;119(Pt 22):4623–4633. doi:10.1242/jcs.03236
  • Huaqi Y, Caipeng Q, Qiang W, Yiqing D, Tao X. The role of SOX18 in bladder cancer and its underlying mechanism in mediating cellular functions. Life Sci. 2019;232:116614. doi:10.1016/j.lfs.2019.116614
  • Shintani T, Kusuhara Y, Daizumoto K, et al. The involvement of hepatocyte growth factor-MET-matrix metalloproteinase 1 signaling in bladder cancer invasiveness and proliferation. Effect of the MET inhibitor, cabozantinib (XL184), on bladder cancer cells. Urology. 2017;101:169e7–170e13. doi:10.1016/j.urology.2016.12.006
  • Yamasaki K, Mukai S, Nagai T, et al. Matriptase-induced phosphorylation of MET is significantly associated with poor prognosis in invasive bladder cancer; an immunohistochemical analysis. Int J Mol Sci. 2018;19(12):12. doi:10.3390/ijms19123708
  • Xu X, Chen H, Lin Y, et al. MicroRNA-409-3p inhibits migration and invasion of bladder cancer cells via targeting c-Met. Mol Cells. 2013;36(1):62–68. doi:10.1007/s10059-013-0044-7
  • Hu Z, Lin Y, Chen H, et al. MicroRNA-101 suppresses motility of bladder cancer cells by targeting c-Met. Biochem Biophys Res Commun. 2013;435(1):82–87. doi:10.1016/j.bbrc.2013.04.042
  • Xu X, Zhu Y, Liang Z, et al. c-Met and CREB1 are involved in miR-433-mediated inhibition of the epithelial-mesenchymal transition in bladder cancer by regulating Akt/GSK-3beta/Snail signaling. Cell Death Dis. 2016;7:e2088. doi:10.1038/cddis.2015.274
  • Li J, Xu X, Meng S, et al. MET/SMAD3/SNAIL circuit mediated by miR-323a-3p is involved in regulating epithelial-mesenchymal transition progression in bladder cancer. Cell Death Dis. 2017;8(8):e3010. doi:10.1038/cddis.2017.331
  • Qiu J, Zeng FR, Fang Y, Li J, Xiao SY. Increased miR-323a induces bladder cancer cell apoptosis by suppressing c-Met. Kaohsiung J Med Sci. 2019;35(9):542–549. doi:10.1002/kjm2.12091
  • Chiyomaru T, Seki N, Inoguchi S, et al. Dual regulation of receptor tyrosine kinase genes EGFR and c-Met by the tumor-suppressive microRNA-23b/27b cluster in bladder cancer. Int J Oncol. 2015;46(2):487–496. doi:10.3892/ijo.2014.2752
  • Li J, Ying Y, Xie H, et al. Dual regulatory role of CCNA2 in modulating CDK6 and MET-mediated cell-cycle pathway and EMT progression is blocked by miR-381-3p in bladder cancer. FASEB J. 2018;33(1):1374–1388. doi:10.1096/fj.201800667R
  • Yu G, Yao W, Xiao W, Li H, Xu H, Lang B. MicroRNA-34a functions as an anti-metastatic microRNA and suppresses angiogenesis in bladder cancer by directly targeting CD44. CR. 2014;33:779. doi:10.1186/s13046-014-0115-4
  • Huang B, Zhai W, Hu G, et al. MicroRNA-206 acts as a tumor suppressor in bladder cancer via targeting YRDC. Am J Transl Res. 2016;8(11):4705–4715.
  • Wiklund ED, Bramsen JB, Hulf T, et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer. 2011;128(6):1327–1334. doi:10.1002/ijc.25461
  • Liu L, Qiu M, Tan G, et al. miR-200c inhibits invasion, migration and proliferation of bladder cancer cells through down-regulation of BMI-1 and E2F3. J Transl Med. 2014;12:305. doi:10.1186/s12967-014-0305-z
  • Zhen Q, Liu J, Gao L, et al. MicroRNA-200a targets EGFR and c-Met to inhibit migration, invasion, and gefitinib resistance in non-small cell lung cancer. Cytogenet Genome Res. 2015;146(1):1–8. doi:10.1159/000434741
  • Hong JH, Roh KS, Suh SS, et al. The expression of microRNA-34a is inversely correlated with c-MET and CDK6 and has a prognostic significance in lung adenocarcinoma patients. Tumour Biol. 2015;36(12):9327–9337. doi:10.1007/s13277-015-3428-9
  • Dang Y, Luo D, Rong M, Chen G. Underexpression of miR-34a in hepatocellular carcinoma and its contribution towards enhancement of proliferating inhibitory effects of agents targeting c-MET. PLoS One. 2013;8(4):e61054. doi:10.1371/journal.pone.0061054
  • Zheng Z, Yan D, Chen X, et al. MicroRNA-206: effective inhibition of gastric cancer progression through the c-Met pathway. PLoS One. 2015;10(7):e0128751. doi:10.1371/journal.pone.0128751
  • Sun C, Liu Z, Li S, et al. Down-regulation of c-Met and Bcl2 by microRNA-206, activates apoptosis, and inhibits tumor cell proliferation, migration and colony formation. Oncotarget. 2015;6(28):25533–25574. doi:10.18632/oncotarget.4575
  • Nie Z, Chen M, Wen X, et al. Endoplasmic reticulum stress and tumor microenvironment in bladder cancer: the missing link. Front Cell Dev Biol. 2021;9:683940. doi:10.3389/fcell.2021.683940
  • Tao L, Qiu J, Slavin S, et al. Recruited T cells promote the bladder cancer metastasis via up-regulation of the estrogen receptor beta/IL-1/c-MET signals. Cancer Lett. 2018;430:215–223. doi:10.1016/j.canlet.2018.03.045
  • Bouattour M, Raymond E, Qin S, et al. Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology. 2018;67(3):1132–1149. doi:10.1002/hep.29496
  • Pasquini G, Giaccone G. C-MET inhibitors for advanced non-small cell lung cancer. Expert Opin Investig Drugs. 2018;27(4):363–375. doi:10.1080/13543784.2018.1462336
  • Marandino L, Raggi D, Calareso G, et al. Cabozantinib plus durvalumab in patients with advanced urothelial carcinoma after platinum chemotherapy: safety and preliminary activity of the open-label, single-arm, phase 2 ARCADIA trial. Clin Genitourin Cancer. 2021;19(5):457–465. doi:10.1016/j.clgc.2021.04.001