125
Views
2
CrossRef citations to date
0
Altmetric
PERSPECTIVES

Genotoxicity-Stimulated and CYLD-Driven Malignant Transformation

ORCID Icon
Pages 2339-2356 | Published online: 27 Nov 2023

References

  • Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science (80-). 2008;319(5868):1352–1355. doi:10.1126/science.1140735
  • Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–1078. doi:10.1038/nature08467
  • Lin Y, Bai L, Chen W, Xu S. The NF-κB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets. 2010;14(1):45–55. doi:10.1517/14728220903431069
  • Li H, Marple T, Hasty P. Ku80-deleted cells are defective at base excision repair. Mutat Res Mol Mech Mutagen. 2013;745–746:16–25. doi:10.1016/j.mrfmmm.2013.03.010
  • David SS, O’Shea VL, Kundu S. Base-excision repair of oxidative DNA damage. Nature. 2007;447(7147):941–950. doi:10.1038/nature05978
  • Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis. 2008;30(1):2–10. doi:10.1093/carcin/bgn250
  • Xia W, Ci S, Li M, et al. Two‐way crosstalk between BER and c‐NHEJ repair pathway is mediated by Pol‐β and Ku70. FASEB J. 2019;33(11):11668–11681. doi:10.1096/fj.201900308R
  • Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT. ATM activation by oxidative stress. Science (80-). 2010;330(6003):517–521. doi:10.1126/science.1192912
  • Amrita Sule SE, Golding SF, Farhan JW, et al. ATM phosphorylates PP2A subunit A resulting in nuclear export and spatiotemporal regulation of the DNA damage response. bioRxiv Prepr. 2021. doi:10.1101/2021.08.29.458108
  • Sun L, Gao J, Huo L, et al. Tumour suppressor CYLD is a negative regulator of the mitotic kinase Aurora-B. J Pathol. 2010;221(4):425–432. doi:10.1002/path.2723
  • Golding SE, Rosenberg E, Valerie N, et al. Improved ATM kinase inhibitor KU-60019 radiosensitizes glioma cells, compromises insulin, AKT and ERK prosurvival signaling, and inhibits migration and invasion. Mol Cancer Ther. 2009;8(10):2894–2902. doi:10.1158/1535-7163.MCT-09-0519
  • Bozulic L, Surucu B, Hynx D, Hemmings BA. PKBα/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell. 2008;30(2):203–213. doi:10.1016/j.molcel.2008.02.024
  • Chowdhury D, Keogh M-C, Ishii H, Peterson CL, Buratowski S, Lieberman J. γ-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell. 2005;20(5):801–809. doi:10.1016/j.molcel.2005.10.003
  • Hoeijmakers JHJ. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411(6835):366–374. doi:10.1038/35077232
  • Chou W-C, Wang H-C, Wong F-H, et al. Chk2-dependent phosphorylation of XRCC1 in the DNA damage response promotes base excision repair. EMBO J. 2008;27(23):3140–3150. doi:10.1038/emboj.2008.229
  • Kuhne C. Repair of a minimal DNA double-strand break by NHEJ requires DNA-PKcs and is controlled by the ATM/ATR checkpoint. Nucleic Acids Res. 2003;31(24):7227–7237. doi:10.1093/nar/gkg937
  • Shang Z-F, Huang B, Xu Q-Z, et al. Inactivation of DNA-dependent protein kinase leads to spindle disruption and mitotic catastrophe with attenuated checkpoint protein 2 phosphorylation in response to DNA damage. Cancer Res. 2010;70(9):3657–3666. doi:10.1158/0008-5472.CAN-09-3362
  • Maachani UB, Kramp T, Hanson R, et al. Targeting MPS1 enhances radiosensitization of human glioblastoma by modulating DNA repair proteins. Mol Cancer Res. 2015;13(5):852–862. doi:10.1158/1541-7786.MCR-14-0462-T
  • Wei J-H, Chou Y-F, Ou Y-H, et al. TTK/hMps1 participates in the regulation of DNA damage checkpoint response by phosphorylating CHK2 on threonine 68. J Biol Chem. 2005;280(9):7748–7757. doi:10.1074/jbc.M410152200
  • Yeh C-W, Yu Z-C, Chen P-H, Cheng Y-C, Shieh S-Y. Phosphorylation at threonine 288 by cell cycle Checkpoint Kinase 2 (CHK2) controls human monopolar Spindle 1 (Mps1) kinetochore localization. J Biol Chem. 2014;289(22):15319–15327. doi:10.1074/jbc.M114.552273
  • Yu Z-C, Huang Y-F, Shieh S-Y. Requirement for human Mps1/TTK in oxidative DNA damage repair and cell survival through MDM2 phosphorylation. Nucleic Acids Res. 2016;44(3):1133–1150. doi:10.1093/nar/gkv1173
  • Shang Z, Yu L, Lin Y-F, Matsunaga S, Shen C-Y, Chen BPC. DNA-PKcs activates the Chk2–Brca1 pathway during mitosis to ensure chromosomal stability. Oncogenesis. 2014;3(2):e85–e85. doi:10.1038/oncsis.2013.49
  • Nihira K, Taira N, Miki Y, Yoshida K. TTK/Mps1 controls nuclear targeting of c-Abl by 14-3-3-coupled phosphorylation in response to oxidative stress. Oncogene. 2008;27(58):7285–7295. doi:10.1038/onc.2008.334
  • Dai Z, Pendergast AM. Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev. 1995;9(21):2569–2582. doi:10.1101/gad.9.21.2569
  • Wang JYJ. The capable ABL: what is its biological function? Mol Cell Biol. 2014;34(7):1188–1197. doi:10.1128/MCB.01454-13
  • Raina D, Ahmad R, Kumar S, et al. MUC1 oncoprotein blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. EMBO J. 2006;25(16):3774–3783. doi:10.1038/sj.emboj.7601263
  • Raina D, Ahmad R, Chen D, Kumar S, Kharbanda S, Kufe DW. Muc1 oncoprotein suppresses activation of the ARF-MDM2-p53 pathway. Cancer Biol Ther. 2008;7(12):1959–1967. doi:10.4161/cbt.7.12.6956
  • Kawai H, Nie L, Yuan Z-M. Inactivation of NF-κB-dependent cell survival, a novel mechanism for the proapoptotic function of c-Abl. Mol Cell Biol. 2002;22(17):6079–6088. doi:10.1128/MCB.22.17.6079-6088.2002
  • Shafman T, Khanna KK, Kedar P, et al. Interaction between ATM protein and c-Abl in response to DNA damage. Nature. 1997;387(6632):520–523. doi:10.1038/387520a0
  • Shaul Y, Ben-Yehoyada M. Role of c-Abl in the DNA damage stress response. Cell Res. 2005;15(1):33–35. doi:10.1038/sj.cr.7290261
  • Kharbanda S, Pandey P, Jin S, et al. Functional interaction between DNA-PK and c-Abl in response to DNA damage. Nature. 1997;386(6626):732–735. doi:10.1038/386732a0
  • Aoyama K, Yamaguchi N, Yuki R, et al. c-Abl induces stabilization of histone deacetylase 1 (HDAC1) in a kinase activity-dependent manner. Cell Biol Int. 2015;39(4):446–456. doi:10.1002/cbin.10413
  • Liberatore RA, Goff SP, Nunes I. NF-κB activity is constitutively elevated in c-Abl null fibroblasts. Proc Natl Acad Sci. 2009;106(42):17823–17828. doi:10.1073/pnas.0905935106
  • Sun Y, Jiang X, Xu Y, et al. Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat Cell Biol. 2009;11(11):1376–1382. doi:10.1038/ncb1982
  • Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 2017;66(6):801–817. doi:10.1016/j.molcel.2017.05.015
  • Jiang Z, Kamath R, Jin S, Balasubramani M, Pandita TK, Rajasekaran B. Tip60-mediated acetylation activates transcription independent apoptotic activity of Abl. Mol Cancer. 2011;10(1):88. doi:10.1186/1476-4598-10-88
  • Wang W, Li M, Ponnusamy S, et al. ABL1-dependent OTULIN phosphorylation promotes genotoxic Wnt/β-catenin activation to enhance drug resistance in breast cancers. Nat Commun. 2020;11(1):3965. doi:10.1038/s41467-020-17770-9
  • Keusekotten K, Elliott PR, Glockner L, et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell. 2013;153(6):1312–1326. doi:10.1016/j.cell.2013.05.014
  • Elliott PR, Nielsen SV, Marco-Casanova P, et al. Molecular basis and regulation of OTULIN-LUBAC interaction. Mol Cell. 2014;54(3):335–348. doi:10.1016/j.molcel.2014.03.018
  • Takiuchi T, Nakagawa T, Tamiya H, et al. Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN. Genes Cells. 2014;19(3):254–272. doi:10.1111/gtc.12128
  • Tao P, Wang S, Ozen S, et al. Deubiquitination of proteasome subunits by OTULIN regulates type I IFN production. Sci Adv. 2021;7:47. doi:10.1126/sciadv.abi6794
  • Di Costanzo A, Del Gaudio N, Conte L, Altucci L. The ubiquitin proteasome system in hematological malignancies: new insight into its functional role and therapeutic options. Cancers. 2020;12(7):1898. doi:10.3390/cancers12071898
  • Elliott PR, Leske D, Hrdinka M, et al. SPATA2 Links CYLD to LUBAC, activates CYLD, and controls LUBAC signaling. Mol Cell. 2016;63(6):990–1005. doi:10.1016/j.molcel.2016.08.001
  • Douglas T, Saleh M. Post-translational modification of OTULIN regulates ubiquitin dynamics and cell death. Cell Rep. 2019;29(11):3652–3663.e5. doi:10.1016/j.celrep.2019.11.014
  • Elliott PR, Leske D, Wagstaff J, et al. Regulation of CYLD activity and specificity by phosphorylation and ubiquitin-binding CAP-Gly domains. Cell Rep. 2021;37(1):109777. doi:10.1016/j.celrep.2021.109777
  • Hrdinka M, Gyrd-Hansen M. The Met1-linked ubiquitin machinery: emerging themes of (De)regulation. Mol Cell. 2017;68(2):265–280. doi:10.1016/j.molcel.2017.09.001
  • Bignell GR, Warren W, Seal S, et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet. 2000;25(2):160–165. doi:10.1038/76006
  • Gao J, Huo L, Sun X, et al. The tumor suppressor CYLD regulates microtubule dynamics and plays a role in cell migration. J Biol Chem. 2008;283(14):8802–8809. doi:10.1074/jbc.M708470200
  • Saito K, Kigawa T, Koshiba S, et al. The CAP-Gly domain of CYLD associates with the proline-rich sequence in NEMO/IKKγ. Structure. 2004;12(9):1719–1728. doi:10.1016/j.str.2004.07.012
  • Uematsu A, Kido K, Takahashi H, et al. The E3 ubiquitin ligase MIB2 enhances inflammation by degrading the deubiquitinating enzyme CYLD. J Biol Chem. 2019;294(38):14135–14148. doi:10.1074/jbc.RA119.010119
  • Reiley W, Zhang M, Wu X, Granger E, Sun S-C. Regulation of the deubiquitinating enzyme CYLD by IκB kinase gamma-dependent phosphorylation. Mol Cell Biol. 2005;25(10):3886–3895. doi:10.1128/MCB.25.10.3886-3895.2005
  • Hutti JE, Shen RR, Abbott DW, et al. Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKɛ promotes cell transformation. Mol Cell. 2009;34(4):461–472. doi:10.1016/j.molcel.2009.04.031
  • Heger K, Wickliffe KE, Ndoja A, et al. OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature. 2018;559(7712):120–124. doi:10.1038/s41586-018-0256-2
  • Weinelt N, van Wijk SJL. Ubiquitin-dependent and -independent functions of OTULIN in cell fate control and beyond. Cell Death Differ. 2021;28(2):493–504. doi:10.1038/s41418-020-00675-x
  • Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science (80-). 2002;296(5573):1634–1635. doi:10.1126/science.1071924
  • Westbrook AM, Wei B, Hacke K, Xia M, Braun J, Schiestl RH. The role of tumour necrosis factor- and tumour necrosis factor receptor signalling in inflammation-associated systemic genotoxicity. Mutagenesis. 2012;27(1):77–86. doi:10.1093/mutage/ger063
  • Ozsoy HZ, Sivasubramanian N, Wieder ED, Pedersen S, Mann DL. Oxidative stress promotes ligand-independent and enhanced ligand-dependent tumor necrosis factor receptor signaling. J Biol Chem. 2008;283(34):23419–23428. doi:10.1074/jbc.M802967200
  • Fernández-Majada V, Welz P-S, Ermolaeva MA, et al. The tumour suppressor CYLD regulates the p53 DNA damage response. Nat Commun. 2016;7(1):12508. doi:10.1038/ncomms12508
  • McCool KW, Miyamoto S. DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out. Immunol Rev. 2012;246(1):311–326. doi:10.1111/j.1600-065X.2012.01101.x
  • Hur GM, Lewis J, Yang Q, et al. The death domain kinase RIP has an essential role in DNA damage-induced NF-κB activation. Genes Dev. 2003;17(7):873–882. doi:10.1101/gad.1062403
  • Biton S, Ashkenazi A. NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-α feedforward signaling. Cell. 2011;145(1):92–103. doi:10.1016/j.cell.2011.02.023
  • Blackwell K, Zhang L, Thomas GS, Sun S, Nakano H, Habelhah H. TRAF2 phosphorylation modulates tumor necrosis factor alpha-induced gene expression and cell resistance to apoptosis. Mol Cell Biol. 2009;29(2):303–314. doi:10.1128/MCB.00699-08
  • Park E-S, Choi S, Shin B, et al. Tumor necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein (TRIP) negatively regulates the TRAF2 ubiquitin-dependent pathway by suppressing the TRAF2-Sphingosine 1-Phosphate (S1P) interaction. J Biol Chem. 2015;290(15):9660–9673. doi:10.1074/jbc.M114.609685
  • Alvarez SE, Harikumar KB, Hait NC, et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature. 2010;465(7301):1084–1088. doi:10.1038/nature09128
  • Shi C-S, Kehrl JH. Activation of stress-activated protein Kinase/c-Jun N-terminal kinase, but not NF-κB, by the Tumor Necrosis Factor (TNF) receptor 1 through a TNF receptor-associated factor 2- and germinal center kinase related-dependent pathway. J Biol Chem. 1997;272(51):32102–32107. doi:10.1074/jbc.272.51.32102
  • Tournier C, Dong C, Turner TK, Jones SN, Flavell RA, Davis RJ. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev. 2001;15(11):1419–1426. doi:10.1101/gad.888501
  • Ventura -J-J, Kennedy NJ, Lamb JA, Flavell RA, Davis RJ. c-Jun NH 2 -terminal kinase is essential for the regulation of AP-1 by tumor necrosis factor. Mol Cell Biol. 2003;23(8):2871–2882. doi:10.1128/MCB.23.8.2871-2882.2003
  • Pomerantz JL. NF-kappa B activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 1999;18(23):6694–6704. doi:10.1093/emboj/18.23.6694
  • Vince JE, Pantaki D, Feltham R, et al. TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (TNF) to efficiently activate NF-κB and to prevent TNF-induced apoptosis. J Biol Chem. 2009;284(51):35906–35915. doi:10.1074/jbc.M109.072256
  • Zhou AY, Shen RR, Kim E, et al. IKKε-mediated tumorigenesis requires K63-linked polyubiquitination by a cIAP1/cIAP2/TRAF2 E3 ubiquitin ligase complex. Cell Rep. 2013;3(3):724–733. doi:10.1016/j.celrep.2013.01.031
  • Shen RR, Zhou AY, Kim E, Lim E, Habelhah H, Hahn WC. IκB kinase ε phosphorylates TRAF2 to promote mammary epithelial cell transformation. Mol Cell Biol. 2012;32(23):4756–4768. doi:10.1128/MCB.00468-12
  • Annibaldi A, Wicky John S, Vanden Berghe T, et al. Ubiquitin-mediated regulation of RIPK1 kinase activity independent of IKK and MK2. Mol Cell. 2018;69(4):566–580.e5. doi:10.1016/j.molcel.2018.01.027
  • Haas TL, Emmerich CH, Gerlach B, et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell. 2009;36(5):831–844. doi:10.1016/j.molcel.2009.10.013
  • Nakatsu Y, Matsuoka M, Chang T-H, et al. Functionally distinct effects of the C-Terminal regions of IKKε and TBK1 on Type I IFN production. PLoS One. 2014;9(4):e94999. doi:10.1371/journal.pone.0094999
  • Sun S-C. CYLD: a tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes. Cell Death Differ. 2010;17(1):25–34. doi:10.1038/cdd.2009.43
  • Marié I, Smith E, Prakash A, Levy DE. Phosphorylation-induced dimerization of interferon regulatory factor 7 unmasks DNA binding and a bipartite transactivation domain. Mol Cell Biol. 2000;20(23):8803–8814. doi:10.1128/MCB.20.23.8803-8814.2000
  • Feltham R, Jamal K, Tenev T, et al. Mind bomb regulates cell death during TNF signaling by suppressing RIPK1ʹs cytotoxic potential. Cell Rep. 2018;23(2):470–484. doi:10.1016/j.celrep.2018.03.054
  • Nakabayashi O, Takahashi H, Moriwaki K, et al. MIND bomb 2 prevents RIPK1 kinase activity-dependent and -independent apoptosis through ubiquitylation of cFLIPL. Commun Biol. 2021;4(1):80. doi:10.1038/s42003-020-01603-y
  • Rajan N, Elliott RJR, Smith A, et al. The cylindromatosis gene product, CYLD, interacts with MIB2 to regulate Notch signalling. Oncotarget. 2014;5(23):12126–12140. doi:10.18632/oncotarget.2573
  • Stempin CC, Chi L, Giraldo-Vela JP, High AA, Häcker H, Redecke V. The E3 ubiquitin ligase mind bomb-2 (MIB2) protein controls B-cell CLL/lymphoma 10 (BCL10)-dependent NF-κB activation. J Biol Chem. 2011;286(43):37147–37157. doi:10.1074/jbc.M111.263384
  • Chen I-T, Hsu P-H, Hsu W-C, Chen N-J, Tseng P-H. Polyubiquitination of transforming growth factor β-activated Kinase 1 (TAK1) at Lysine 562 residue regulates TLR4-mediated JNK and p38 MAPK Activation. Sci Rep. 2015;5(1):12300. doi:10.1038/srep12300
  • Zhao Y, Ma CA, Wu L, et al. CYLD and the NEMO zinc finger regulate tumor necrosis factor signaling and early embryogenesis. J Biol Chem. 2015;290(36):22076–22084. doi:10.1074/jbc.M115.658096
  • Ahmed N, Zeng M, Sinha I, et al. The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation. Nat Immunol. 2011;12(12):1176–1183. doi:10.1038/ni.2157
  • Moreno-García ME, Sommer K, Rincon-Arano H, et al. Kinase-Independent Feedback of the TAK1/TAB1 Complex on BCL10 Turnover and NF-κB Activation. Mol Cell Biol. 2013;33(6):1149–1163. doi:10.1128/MCB.06407-11
  • Le Clorennec C, Lazrek Y, Dubreuil O, et al. ITCH-dependent proteasomal degradation of c-FLIP induced by the anti-HER3 antibody 9F7-F11 promotes DR5/caspase 8-mediated apoptosis of tumor cells. Cell Commun Signal. 2019;17(1):106. doi:10.1186/s12964-019-0413-8
  • Wei R, Xu LW, Liu J, et al. SPATA2 regulates the activation of RIPK1 by modulating linear ubiquitination. Genes Dev. 2017;31(11):1162–1176. doi:10.1101/gad.299776.117
  • Tang Y, Joo D, Liu G, et al. Linear ubiquitination of cFLIP induced by LUBAC contributes to TNFα-induced apoptosis. J Biol Chem. 2018;293(52):20062–20072. doi:10.1074/jbc.RA118.005449
  • Peltzer N, Darding M, Montinaro A, et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature. 2018;557(7703):112–117. doi:10.1038/s41586-018-0064-8
  • Lafont E, Kantari‐Mimoun C, Draber P, et al. The linear ubiquitin chain assembly complex regulates TRAIL ‐induced gene activation and cell death. EMBO J. 2017;36(9):1147–1166. doi:10.15252/embj.201695699
  • Tu H, Tang Y, Zhang J, et al. Linear ubiquitination of RIPK1 on Lys612 regulates systemic inflammation via preventing cell death. J Immunol. 2021;207(2):602–612. doi:10.4049/jimmunol.2100299
  • Kanayama A, Seth RB, Sun L, et al. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol Cell. 2004;15(4):535–548. doi:10.1016/j.molcel.2004.08.008
  • Jaco I, Annibaldi A, Lalaoui N, et al. MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol Cell. 2017;66(5):698–710.e5. doi:10.1016/j.molcel.2017.05.003
  • Emmerich CH, Ordureau A, Strickson S, et al. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci. 2013;110(38):15247–15252. doi:10.1073/pnas.1314715110
  • Zhang J, Clark K, Lawrence T, Peggie MW, Cohen P. An unexpected twist to the activation of IKKβ: TAK1 primes IKKβ for activation by autophosphorylation. Biochem J. 2014;461(3):531–537. doi:10.1042/BJ20140444
  • Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature. 2003;424(6950):793–796. doi:10.1038/nature01803
  • Lim JW, Kim H, Kim KH. Expression of Ku70 and Ku80 mediated by NF-κB and Cyclooxygenase-2 is related to proliferation of human gastric cancer cells. J Biol Chem. 2002;277(48):46093–46100. doi:10.1074/jbc.M206603200
  • Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J. NF-κB signals induce the expression of c-FLIP. Mol Cell Biol. 2001;21(16):5299–5305. doi:10.1128/MCB.21.16.5299-5305.2001
  • Sakamoto K, Hikiba Y, Nakagawa H, et al. Promotion of DNA repair by nuclear IKKβ phosphorylation of ATM in response to genotoxic stimuli. Oncogene. 2013;32(14):1854–1862. doi:10.1038/onc.2012.192
  • Boehm JS, Zhao JJ, Yao J, et al. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell. 2007;129(6):1065–1079. doi:10.1016/j.cell.2007.03.052
  • Creixell P, Schoof EM, Tan CSH, Linding R. Mutational properties of amino acid residues: implications for evolvability of phosphorylatable residues. Philos Trans R Soc B Biol Sci. 2012;367(1602):2584–2593. doi:10.1098/rstb.2012.0076
  • Mészáros B, Hajdu-Soltész B, Zeke A, Dosztányi Z. Mutations of intrinsically disordered protein regions can drive cancer but lack therapeutic strategies. Biomolecules. 2021;11(3):381. doi:10.3390/biom11030381
  • Pajkos M, Zeke A, Dosztányi Z. Ancient evolutionary origin of intrinsically disordered cancer risk regions. Biomolecules. 2020;10(8):1115. doi:10.3390/biom10081115
  • Asselman J, De Coninck DI, Beert E, et al. Bisulfite sequencing with daphnia highlights a role for epigenetics in regulating stress response to microcystis through preferential differential methylation of serine and threonine amino acids. Environ Sci Technol. 2017;51(2):924–931. doi:10.1021/acs.est.6b03870
  • Greuber EK, Smith-Pearson P, Wang J, Pendergast AM. Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer. 2013;13(8):559–571. doi:10.1038/nrc3563
  • Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14(5):359–370. doi:10.1038/nrc3711
  • Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21(3):297–308. doi:10.1016/j.ccr.2012.02.014
  • Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol. 2021. doi:10.1016/j.semcancer.2021.03.010
  • Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126(1):107–120. doi:10.1016/j.cell.2006.05.036
  • Franklin DA, He Y, Leslie PL, et al. p53 coordinates DNA repair with nucleotide synthesis by suppressing PFKFB3 expression and promoting the pentose phosphate pathway. Sci Rep. 2016;6(1):38067. doi:10.1038/srep38067
  • Wang L, Lin Y, Zhou X, et al. CYLD deficiency enhances metabolic reprogramming and tumor progression in nasopharyngeal carcinoma via PFKFB3. Cancer Lett. 2022;532:215586. doi:10.1016/j.canlet.2022.215586
  • Massoumi R, Chmielarska K, Hennecke K, Pfeifer A, Fässler R. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-κB signaling. Cell. 2006;125(4):665–677. doi:10.1016/j.cell.2006.03.041
  • Chang T-P, Vancurova I. Bcl3 regulates pro-survival and pro-inflammatory gene expression in cutaneous T-cell lymphoma. Biochim Biophys Acta - Mol Cell Res. 2014;1843(11):2620–2630. doi:10.1016/j.bbamcr.2014.07.012
  • Erol A. IKK-mediated CYLD phosphorylation and cellular redox activity. Mol Med. 2022;28(1):14. doi:10.1186/s10020-022-00439-y
  • Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the hallmarks of cancer. Cancer Cell. 2018;34(1):21–43. doi:10.1016/j.ccell.2018.03.022
  • Manea A, Tanase LI, Raicu M, Simionescu M. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-κB in human aortic smooth muscle cells. Biochem Biophys Res Commun. 2010;396(4):901–907. doi:10.1016/j.bbrc.2010.05.019
  • Haq S, Sarodaya N, Karapurkar JK, et al. CYLD destabilizes NoxO1 protein by promoting ubiquitination and regulates prostate cancer progression. Cancer Lett. 2022;525:146–157. doi:10.1016/j.canlet.2021.10.032
  • Skonieczna M, Hejmo T, Poterala-Hejmo A, Cieslar-Pobuda A, Buldak RJ. NADPH oxidases: insights into selected functions and mechanisms of action in cancer and stem cells. Oxid Med Cell Longev. 2017;2017:1–15. doi:10.1155/2017/9420539
  • Stegmeier F, Sowa ME, Nalepa G, Gygi SP, Harper JW, Elledge SJ. The tumor suppressor CYLD regulates entry into mitosis. Proc Natl Acad Sci. 2007;104(21):8869–8874. doi:10.1073/pnas.0703268104
  • Liccardi G, Ramos Garcia L, Tenev T, et al. RIPK1 and Caspase-8 ensure chromosome stability independently of their role in cell death and inflammation. Mol Cell. 2019;73(3):413–428.e7. doi:10.1016/j.molcel.2018.11.010
  • li D, Gao J, Yang Y, et al. CYLD coordinates with EB1 to regulate microtubule dynamics and cell migration. Cell Cycle. 2014;13(6):974–983. doi:10.4161/cc.27838
  • Wu J, Huang Y-F, Zhou X-K, et al. Skp2 is required for Aurora B activation in cell mitosis and spindle checkpoint. Cell Cycle. 2015;14(24):3877–3884. doi:10.1080/15384101.2015.1120916
  • Sun L, Gao J, Dong X, et al. EB1 promotes Aurora-B kinase activity through blocking its inactivation by protein phosphatase 2A. Proc Natl Acad Sci. 2008;105(20):7153–7158. doi:10.1073/pnas.0710018105
  • Tauriello DVF, Haegebarth A, Kuper I, et al. Loss of the tumor suppressor CYLD enhances Wnt/β-Catenin signaling through K63-linked ubiquitination of Dvl. Mol Cell. 2010;37(5):607–619. doi:10.1016/j.molcel.2010.01.035
  • van Andel H, Kocemba KA, de Haan-Kramer A, et al. Loss of CYLD expression unleashes Wnt signaling in multiple myeloma and is associated with aggressive disease. Oncogene. 2017;36(15):2105–2115. doi:10.1038/onc.2016.368
  • Yang Y, Liu M, Li D, et al. CYLD regulates spindle orientation by stabilizing astral microtubules and promoting dishevelled-NuMA-dynein/dynactin complex formation. Proc Natl Acad Sci. 2014;111(6):2158–2163. doi:10.1073/pnas.1319341111
  • Wickström SA, Masoumi KC, Khochbin S, Fässler R, Massoumi R. CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin. EMBO J. 2010;29(1):131–144. doi:10.1038/emboj.2009.317
  • Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002;417(6887):455–458. doi:10.1038/417455a
  • Lee Y-S, Lim K-H, Guo X, et al. The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis. Cancer Res. 2008;68(18):7561–7569. doi:10.1158/0008-5472.CAN-08-0188
  • Rodgers MA, Bowman JW, Fujita H, et al. The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J Exp Med. 2014;211(7):1333–1347. doi:10.1084/jem.20132486
  • Rébé C, Ghiringhelli F. Interleukin-1β and Cancer. Cancers. 2020;12(7):1791. doi:10.3390/cancers12071791
  • Chariot A, Leonardi A, Müller J, Bonif M, Brown K, Siebenlist U. Association of the adaptor TANK with the IκB Kinase (IKK) regulator NEMO connects IKK complexes with IKKε and TBK1 kinases. J Biol Chem. 2002;277(40):37029–37036. doi:10.1074/jbc.M205069200
  • Tu D, Zhu Z, Zhou AY, et al. Structure and ubiquitination-dependent activation of TANK-binding Kinase 1. Cell Rep. 2013;3(3):747–758. doi:10.1016/j.celrep.2013.01.033
  • Durand J, Zhang Q, Baldwin A. Roles for the IKK-related kinases TBK1 and IKKε in cancer. Cells. 2018;7(9):139. doi:10.3390/cells7090139
  • Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261–1274. doi:10.1016/j.cell.2007.06.009
  • Xie X, Zhang D, Zhao B, et al. IκB kinase ε and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proc Natl Acad Sci. 2011;108(16):6474–6479. doi:10.1073/pnas.1016132108
  • Goktuna Sİ. IKBKE inhibits TSC1 to activate the mTOR/S6K pathway for oncogenic transformation. TURKISH J Biol. 2018;42(4):268–278. doi:10.3906/biy-1801-57
  • Bodur C, Kazyken D, Huang K, et al. The IKK‐related kinase TBK1 activates mTORC1 directly in response to growth factors and innate immune agonists. EMBO J. 2018;37(1):19–38. doi:10.15252/embj.201696164
  • Tooley AS, Kazyken D, Bodur C, Gonzalez IE, Fingar DC. The innate immune kinase TBK1 directly increases mTORC2 activity and downstream signaling to Akt. J Biol Chem. 2021;297(2):100942. doi:10.1016/j.jbc.2021.100942
  • Blagosklonny MV. Answering the ultimate question “What is the Proximal Cause of Aging?”. Aging. 2012;4(12):861–877. doi:10.18632/aging.100525
  • Blagosklonny MV. The hyperfunction theory of aging: three common misconceptions. Oncoscience. 2021;8:103–107. doi:10.18632/oncoscience.545
  • Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35. doi:10.1038/nrm3025
  • Page A, Navarro M, Suárez-Cabrera C, Bravo A, Ramirez A. Context-dependent role of IKKβ in cancer. Genes. 2017;8(12):376. doi:10.3390/genes8120376
  • Wei Y, Zhao Q, Gao Z, et al. The local immune landscape determines tumor PD-L1 heterogeneity and sensitivity to therapy. J Clin Invest. 2019;129(8):3347–3360. doi:10.1172/JCI127726
  • Antonangeli F, Natalini A, Garassino MC, Sica A, Santoni A, Di Rosa F. Regulation of PD-L1 Expression by NF-κB in Cancer. Front Immunol. 2020;11. doi:10.3389/fimmu.2020.584626
  • Belgnaoui SM, Paz S, Samuel S, et al. Linear ubiquitination of NEMO negatively regulates the interferon antiviral response through disruption of the MAVS-TRAF3 complex. Cell Host Microbe. 2012;12(2):211–222. doi:10.1016/j.chom.2012.06.009
  • Musella M, Galassi C, Manduca N, Sistigu A. The Yin and Yang of Type I IFNs in cancer promotion and immune activation. Biology. 2021;10(9):856. doi:10.3390/biology10090856
  • Baydoun HH, Bai XT, Shelton S, Nicot C. HTLV-I tax increases genetic instability by inducing DNA double strand breaks during DNA replication and switching repair to NHEJ. PLoS One. 2012;7(8):e42226. doi:10.1371/journal.pone.0042226
  • Bunting SF, Nussenzweig A. End-joining, translocations and cancer. Nat Rev Cancer. 2013;13(7):443–454. doi:10.1038/nrc3537
  • Pannem RR, Dorn C, Ahlqvist K, Bosserhoff AK, Hellerbrand C, Massoumi R. CYLD controls c-MYC expression through the JNK-dependent signaling pathway in hepatocellular carcinoma. Carcinogenesis. 2014;35(2):461–468. doi:10.1093/carcin/bgt335
  • Poli V, Fagnocchi L, Fasciani A, et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun. 2018;9(1):1024. doi:10.1038/s41467-018-03264-2
  • Alameda JP, Ramírez Á, García-Fernández RA, et al. Premature aging and cancer development in transgenic mice lacking functional CYLD. Aging. 2019;11(1):127–159. doi:10.18632/aging.101732
  • Khatri A, Wang J, Pendergast AM. Multifunctional Abl kinases in health and disease. J Cell Sci. 2016;129(1):9–16. doi:10.1242/jcs.175521
  • Strobelt R, Adler J, Paran N, et al. Imatinib inhibits SARS-CoV-2 infection by an off-target-mechanism. Sci Rep. 2022;12(1):5758. doi:10.1038/s41598-022-09664-1
  • Hantschel O, Wiesner S, Güttler T, et al. Structural basis for the cytoskeletal association of Bcr-Abl/c-Abl. Mol Cell. 2005;19(4):461–473. doi:10.1016/j.molcel.2005.06.030
  • Yuan Z-M, Shioya H, Ishiko T, et al. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature. 1999;399(6738):814–817. doi:10.1038/21704