136
Views
4
CrossRef citations to date
0
Altmetric
REVIEW

RNA Modifications Meet Tumors

, , , , , , , & show all
Pages 3223-3243 | Received 24 Sep 2022, Accepted 11 Nov 2022, Published online: 27 Nov 2023

References

  • Zhao LY, Song J, Liu Y., et al. Mapping the epigenetic modifications of DNA and RNA. Protein Cell. 2020;11(11):792–808. doi:10.1007/s13238-020-00733-7
  • Biswas S, Rao CM. Epigenetics in cancer: fundamentals and Beyond. Pharmacol Ther. 2017;173:118–134. doi:10.1016/j.pharmthera.2017.02.011
  • Boccaletto P, Stefaniak F, Ray A, et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 2022;50(D1):D231–d235. doi:10.1093/nar/gkab1083
  • Schaefer MR. The Regulation of RNA Modification Systems: the Next Frontier in Epitranscriptomics? Genes. 2021;12(3):345. doi:10.3390/genes12030345
  • Xiong X, Li X, Yi C. N(1)-methyladenosine methylome in messenger RNA and non-coding RNA. Curr Opin Chem Biol. 2018;45:179–186. doi:10.1016/j.cbpa.2018.06.017
  • Cerneckis J, Cui Q, He C, et al. Decoding pseudouridine: an emerging target for therapeutic development. Trends Pharmacol Sci. 2022;43(6):522–535. doi:10.1016/j.tips.2022.03.008
  • Dominissini D, Moshitch-Moshkovitz S, Amariglio N, et al. Adenosine-to-inosine RNA editing meets cancer. Carcinogenesis. 2011;32(11):1569–1577. doi:10.1093/carcin/bgr124
  • Luo X, Li H, Liang J, et al. RMVar: an updated database of functional variants involved in RNA modifications. Nucleic Acids Res. 2021;49(D1):D1405–D1412. doi:10.1093/nar/gkaa811
  • Chen K, Song B, Tang Y, et al. RMDisease: a database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis. Nucleic Acids Res. 2021;49(D1):D1396–D1404. doi:10.1093/nar/gkaa790
  • Vitale I, Manic G, Coussens LM, et al. Macrophages and Metabolism in the Tumor Microenvironment. Cell Metab. 2019;30(1):36–50. doi:10.1016/j.cmet.2019.06.001
  • Hinshaw DC, Shevde LA. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019;79(18):4557–4566. doi:10.1158/0008-5472.CAN-18-3962
  • Hui L, Chen Y. Tumor microenvironment: sanctuary of the devil. Cancer Lett. 2015;368(1):7–13. doi:10.1016/j.canlet.2015.07.039
  • Denton AE, Roberts EW, Fearon DT. Stromal Cells in the Tumor Microenvironment. Adv Exp Med Biol. 2018;1060:99–114.
  • Wei CM, Gershowitz A, Moss B. Methylated nucleotides block 5’ terminus of HeLa cell messenger RNA. Cell. 1975;4(4):379–386. doi:10.1016/0092-8674(75)90158-0
  • Wei W, Ji X, Guo X, et al. Regulatory Role of N 6 -methyladenosine (m 6 A) Methylation in RNA Processing and Human Diseases. J Cell Biochem. 2017;118(9):2534–2543. doi:10.1002/jcb.25967
  • Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20(10):608–624. doi:10.1038/s41580-019-0168-5
  • Oerum S, Meynier V, Catala M, Tisné C. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res. 2021;49(13):7239–7255. doi:10.1093/nar/gkab378
  • Tang Y, Chen K, Wu X, et al. DRUM: inference of Disease-Associated m(6)A RNA Methylation Sites From a Multi-Layer Heterogeneous Network. Front Genet. 2019;10:266. doi:10.3389/fgene.2019.00266
  • Song B, Huang D, Zhang Y, et al. m6A-TSHub: unveiling the Context-specific m(6)A Methylation and m6A-affecting Mutations in 23 Human Tissues. Genomics Proteomics Bioinformatics. 2022. doi:10.1016/j.gpb.2022.09.001
  • Wang S, Lv W, Li T, et al. Dynamic regulation and functions of mRNA m6A modification. Cancer Cell Int. 2022;22(1):48. doi:10.1186/s12935-022-02452-x
  • Meyer KD, Jaffrey SR. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 2014;15(5):313–326. doi:10.1038/nrm3785
  • Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–120. doi:10.1038/nature12730
  • Li ZX, Zheng Z-Q, Yang P-Y, et al. WTAP-mediated m(6)A modification of lncRNA DIAPH1-AS1 enhances its stability to facilitate nasopharyngeal carcinoma growth and metastasis. Cell Death Differ. 2022;29(6):1137–1151. doi:10.1038/s41418-021-00905-w
  • Yu D, Pan M, Li Y, et al. RNA N6-methyladenosine reader IGF2BP2 promotes lymphatic metastasis and epithelial-mesenchymal transition of head and neck squamous carcinoma cells via stabilizing slug mRNA in an m6A-dependent manner. J Exp Clin Cancer Res. 2022;41(1):6. doi:10.1186/s13046-021-02212-1
  • Huang J, Sun W, Wang Z, et al. FTO suppresses glycolysis and growth of papillary thyroid cancer via decreasing stability of APOE mRNA in an N6-methyladenosine-dependent manner. J Exp Clin Cancer Res. 2022;41(1):42. doi:10.1186/s13046-022-02254-z
  • Hu Y, Gong C, Li Z, et al. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification. Mol Cancer. 2022;21(1):34. doi:10.1186/s12943-022-01522-y
  • Schöller E, Weichmann F, Treiber T, et al. Interactions, localization, and phosphorylation of the m 6 A generating METTL3–METTL14–WTAP complex. Rna. 2018;24(4):499–512. doi:10.1261/rna.064063.117
  • Fang R, Chen X, Zhang S, et al. EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun. 2021;12(1):177. doi:10.1038/s41467-020-20379-7
  • Li J, Xie H, Ying Y, et al. YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer. 2020;19(1):152. doi:10.1186/s12943-020-01267-6
  • Dai X, Zhang T, Hua D. Ubiquitination and SUMOylation: protein homeostasis control over cancer. Epigenomics. 2022;14(1):43–58. doi:10.2217/epi-2021-0371
  • Shen D, Ding L, Lu Z, et al. METTL14-mediated Lnc-LSG1 m6A modification inhibits clear cell renal cell carcinoma metastasis via regulating ESRP2 ubiquitination. Mol Ther Nucleic Acids. 2022;27:547–561. doi:10.1016/j.omtn.2021.12.024
  • Zhu Y, Zhou B, Hu X, et al. LncRNA LINC00942 promotes chemoresistance in gastric cancer by suppressing MSI2 degradation to enhance c-Myc mRNA stability. Clin Transl Med. 2022;12(1):e703. doi:10.1002/ctm2.703
  • Wang Y, Chen Z. Long noncoding RNA UBA6-AS1 inhibits the malignancy of ovarian cancer cells via suppressing the decay of UBA6 mRNA. Bioengineered. 2022;13(1):178–189. doi:10.1080/21655979.2021.2011640
  • Yadav P, Subbarayalu P, Medina D, et al. M6A RNA Methylation Regulates Histone Ubiquitination to Support Cancer Growth and Progression. Cancer Res. 2022;82(10):1872–1889. doi:10.1158/0008-5472.CAN-21-2106
  • Han ZJ, Feng Y-H, Gu B-H, et al. The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol. 2018;52(4):1081–1094. doi:10.3892/ijo.2018.4280
  • Du Y, Hou G, Zhang H, et al. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res. 2018;46(10):5195–5208. doi:10.1093/nar/gky156
  • Hou G, Zhao X, Li L, et al. SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity with m6A-modified mRNAs. Nucleic Acids Res. 2021;49(5):2859–2877. doi:10.1093/nar/gkab065
  • Liu Q, Huang Q, Liu H, et al. SUMOylation of methyltransferase-like 3 facilitates colorectal cancer progression by promoting circ_0000677 in an m 6 A-dependent manner. J Gastroenterol Hepatol. 2022;37(4):700–713. doi:10.1111/jgh.15775
  • Liu J, Dou X, Chen C, et al. N 6 -methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science. 2020;367(6477):580–586. doi:10.1126/science.aay6018
  • Wiener D, Schwartz S. The epitranscriptome beyond m(6)A. Nat Rev Genet. 2021;22(2):119–131. doi:10.1038/s41576-020-00295-8
  • Hussain S, Aleksic J, Blanco S, et al. Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biol. 2013;14(11):215. doi:10.1186/gb4143
  • Yang X, Yang Y, Sun B-F, et al. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 2017;27(5):606–625. doi:10.1038/cr.2017.55
  • Zhang Q, Liu F, Chen W, et al. The role of RNA m 5 C modification in cancer metastasis. Int J Biol Sci. 2021;17(13):3369–3380. doi:10.7150/ijbs.61439
  • Chen YS, Yang W-L, Zhao Y-L, et al. Dynamic transcriptomic m 5 C and its regulatory role in RNA processing. Wiley Interdiscip Rev RNA. 2021;12(4):e1639. doi:10.1002/wrna.1639
  • Shinoda S, Kitagawa S, Nakagawa S, et al. Mammalian NSUN2 introduces 5-methylcytidines into mitochondrial tRNAs. Nucleic Acids Res. 2019;47(16):8734–8745. doi:10.1093/nar/gkz575
  • Pan J, Huang Z, Xu Y. m5C RNA Methylation Regulators Predict Prognosis and Regulate the Immune Microenvironment in Lung Squamous Cell Carcinoma. Front Oncol. 2021;11:657466. doi:10.3389/fonc.2021.657466
  • Pan J, Huang Z, Xu Y. m5C-Related lncRNAs Predict Overall Survival of Patients and Regulate the Tumor Immune Microenvironment in Lung Adenocarcinoma. Front Cell Dev Biol. 2021;9:671821. doi:10.3389/fcell.2021.671821
  • Huang Z, Li J, Chen J, et al. Construction of Prognostic Risk Model of 5-Methylcytosine-Related Long Non-Coding RNAs and Evaluation of the Characteristics of Tumor-Infiltrating Immune Cells in Breast Cancer. Front Genet. 2021;12:748279. doi:10.3389/fgene.2021.748279
  • Huang Z, Pan J, Wang H, et al. Prognostic Significance and Tumor Immune Microenvironment Heterogenicity of m5C RNA Methylation Regulators in Triple-Negative Breast Cancer. Front Cell Dev Biol. 2021;9:657547. doi:10.3389/fcell.2021.657547
  • Gao W, Chen L, Lin L, et al. SIAH1 reverses chemoresistance in epithelial ovarian cancer via ubiquitination of YBX-1. Oncogenesis. 2022;11(1):13. doi:10.1038/s41389-022-00387-6
  • Hu Y, Chen C, Tong X, et al. NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation. Cell Death Dis. 2021;12(9):842. doi:10.1038/s41419-021-04127-3
  • Delaunay S, Pascual G, Feng B, et al. Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature. 2022;607(7919):593–603. doi:10.1038/s41586-022-04898-5
  • Delaunay S, Frye M. RNA modifications regulating cell fate in cancer. Nat Cell Biol. 2019;21(5):552–559. doi:10.1038/s41556-019-0319-0
  • Merrick WC, Pavitt GD. Protein Synthesis Initiation in Eukaryotic Cells. Cold Spring Harb Perspect Biol. 2018;10(12):a033092. doi:10.1101/cshperspect.a033092
  • Shatkin AJ. Capping of eucaryotic mRNAs. Cell. 1976;9(4 pt 2):645–653. doi:10.1016/0092-8674(76)90128-8
  • Orellana EA, Liu Q, Yankova E, et al. METTL1-mediated m(7)G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell. 2021;81(16):3323–3338.e14. doi:10.1016/j.molcel.2021.06.031
  • Tomikawa C. 7-Methylguanosine Modifications in Transfer RNA (tRNA). Int J Mol Sci. 2018;19(12):4080. doi:10.3390/ijms19124080
  • Dai Z, Liu H, Liao J, et al. N(7)-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol Cell. 2021;81(16):3339–3355.e8. doi:10.1016/j.molcel.2021.07.003
  • Ma J, Han H, Huang Y, et al. METTL1/WDR4-mediated m(7)G tRNA modifications and m(7)G codon usage promote mRNA translation and lung cancer progression. Mol Ther. 2021;29(12):3422–3435. doi:10.1016/j.ymthe.2021.08.005
  • Ying X, Liu B, Yuan Z, et al. METTL1-m 7 G-EGFR/EFEMP1 axis promotes the bladder cancer development. Clin Transl Med. 2021;11(12):e675. doi:10.1002/ctm2.675
  • Katsara O, Schneider RJ. m(7)G tRNA modification reveals new secrets in the translational regulation of cancer development. Mol Cell. 2021;81(16):3243–3245. doi:10.1016/j.molcel.2021.07.030
  • Xia P, Zhang H, Xu K, et al. MYC-targeted WDR4 promotes proliferation, metastasis, and sorafenib resistance by inducing CCNB1 translation in hepatocellular carcinoma. Cell Death Dis. 2021;12(7):691. doi:10.1038/s41419-021-03973-5
  • Pandolfini L, Barbieri I, Bannister AJ, et al. METTL1 Promotes let-7 MicroRNA Processing via m7G Methylation. Mol Cell. 2019;74(6):1278–1290.e9. doi:10.1016/j.molcel.2019.03.040
  • Jin H, Huo C, Zhou T, et al. m(1)A RNA Modification in Gene Expression Regulation. Genes. 2022;13(5):910. doi:10.3390/genes13050910
  • Xu L, Zhang C, Yin H, et al. RNA modifications act as regulators of cell death. RNA Biol. 2021;18(12):2183–2193. doi:10.1080/15476286.2021.1925460
  • Qu X, Zhang Y, Sang X, et al. Methyladenosine Modification in RNAs: from Regulatory Roles to Therapeutic Implications in Cancer. Cancers. 2022;14(13):3195. doi:10.3390/cancers14133195
  • Xu Y, Zhang M, Zhang Q, et al. Role of Main RNA Methylation in Hepatocellular Carcinoma: N6-Methyladenosine, 5-Methylcytosine, and N1-Methyladenosine. Front Cell Dev Biol. 2021;9:767668. doi:10.3389/fcell.2021.767668
  • Wang B, Niu L, Wang Z, et al. RNA m1A Methyltransferase TRMT6 Predicts Poorer Prognosis and Promotes Malignant Behavior in Glioma. Front Mol Biosci. 2021;8:692130. doi:10.3389/fmolb.2021.692130
  • Shao D, Li Y, Wu J, et al. An m6A/m5C/m1A/m7G-Related Long Non-coding RNA Signature to Predict Prognosis and Immune Features of Glioma. Front Genet. 2022;13:903117. doi:10.3389/fgene.2022.903117
  • Su Z, Monshaugen I, Wilson B, et al. TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer. Nat Commun. 2022;13(1):2165. doi:10.1038/s41467-022-29790-8
  • Roy B. Effects of mRNA Modifications on Translation: an Overview. Methods Mol Biol. 2021;2298:327–356.
  • Martinez NM, Su A, Burns MC, et al. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol Cell. 2022;82(3):645–659.e9. doi:10.1016/j.molcel.2021.12.023
  • Cui Q, Yin K, Zhang X, et al. Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. Nat Cancer. 2021;2(9):932–949. doi:10.1038/s43018-021-00238-0
  • Song D, Guo M, Xu S, et al. HSP90-dependent PUS7 overexpression facilitates the metastasis of colorectal cancer cells by regulating LASP1 abundance. J Exp Clin Cancer Res. 2021;40(1):170. doi:10.1186/s13046-021-01951-5
  • Goncharov AO, Shender VO, Kuznetsova KG, et al. Interplay between A-to-I Editing and Splicing of RNA: a Potential Point of Application for Cancer Therapy. Int J Mol Sci. 2022;23(9):5240. doi:10.3390/ijms23095240
  • Song B, Shiromoto Y, Minakuchi M, et al. The role of RNA editing enzyme ADAR1 in human disease. Wiley Interdiscip Rev RNA. 2022;13(1):e1665. doi:10.1002/wrna.1665
  • Jiang L, Hao Y, Shao C, et al. ADAR1-mediated RNA editing links ganglioside catabolism to glioblastoma stem cell maintenance. J Clin Invest. 2022;132(6). doi:10.1172/JCI143397
  • Nakamura K, Shigeyasu K, Okamoto K, et al. ADAR1 and AZIN1 RNA editing function as an oncogene and contributes to immortalization in endometrial cancer. Gynecol Oncol. 2022;166(2):326–333. doi:10.1016/j.ygyno.2022.05.026
  • Baker AR, Miliotis C, Ramírez-Moya J, et al. Transcriptome Profiling of ADAR1 Targets in Triple-Negative Breast Cancer Cells Reveals Mechanisms for Regulating Growth and Invasion. Mol Cancer Res. 2022;20(6):960–971. doi:10.1158/1541-7786.MCR-21-0604
  • Eguchi Y, Itoh T, Tomizawa J. Antisense RNA. Annu Rev Biochem. 1991;60:631–652. doi:10.1146/annurev.bi.60.070191.003215
  • Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev. 2022;182:114113. doi:10.1016/j.addr.2022.114113
  • Xu JZ, Zhang JL, Zhang WG. Antisense RNA: the new favorite in genetic research. J Zhejiang Univ Sci B. 2018;19(10):739–749. doi:10.1631/jzus.B1700594
  • Knowling S, Morris KV. Non-coding RNA and antisense RNA. Nature’s trash or treasure? Biochimie. 2011;93(11):1922–1927. doi:10.1016/j.biochi.2011.07.031
  • Golla U, Sesham K, Dallavalasa S, et al. ABHD11-AS1: an Emerging Long Non-Coding RNA (lncRNA) with Clinical Significance in Human Malignancies. Noncoding RNA. 2022;8(2). doi:10.3390/ncrna8020021
  • Tao L, Li D, Mu S, et al. LncRNA MAPKAPK5_AS1 facilitates cell proliferation in hepatitis B virus -related hepatocellular carcinoma. Lab Invest. 2022;102(5):494–504. doi:10.1038/s41374-022-00731-9
  • Hu Y, Tang J, Xu F, et al. A reciprocal feedback between N6-methyladenosine reader YTHDF3 and lncRNA DICER1-AS1 promotes glycolysis of pancreatic cancer through inhibiting maturation of miR-5586-5p. J Exp Clin Cancer Res. 2022;41(1):69. doi:10.1186/s13046-022-02285-6
  • Arneth B. Tumor Microenvironment. Medicina. 2019;56(1):15. doi:10.3390/medicina56010015
  • Jiang F, Hu Y, Liu X, et al. Methylation Pattern Mediated by m(6)A Regulator and Tumor Microenvironment Invasion in Lung Adenocarcinoma. Oxid Med Cell Longev. 2022;2022:2930310. doi:10.1155/2022/2930310
  • Liu T, Hu X, Lin C, et al. 5-methylcytosine RNA methylation regulators affect prognosis and tumor microenvironment in lung adenocarcinoma. Ann Transl Med. 2022;10(5):259. doi:10.21037/atm-22-500
  • Liu Y, Wang T, Fang Z, et al. Analysis of N6-methyladenosine-related lncRNAs in the tumor immune microenvironment and their prognostic role in pancreatic cancer. J Cancer Res Clin Oncol. 2022.
  • Wang R, Guo Y, Ma P, et al. Comprehensive Analysis of 5-Methylcytosine (m(5)C) Regulators and the Immune Microenvironment in Pancreatic Adenocarcinoma to Aid Immunotherapy. Front Oncol. 2022;12:851766. doi:10.3389/fonc.2022.851766
  • Zhang Y, Zhang K, Gong H, et al. Links Between N (6)-Methyladenosine and Tumor Microenvironments in Colorectal Cancer. Front Cell Dev Biol. 2022;10:807129. doi:10.3389/fcell.2022.807129
  • Fang X, Miao C, Zeng T, et al. Role of m 5 C RNA methylation regulators in colorectal cancer prognosis and immune microenvironment. J Clin Lab Anal. 2022;36(4):e24303. doi:10.1002/jcla.24303
  • Qing Y, Su R, Chen J. RNA modifications in hematopoietic malignancies: a new research frontier. Blood. 2021;138(8):637–648. doi:10.1182/blood.2019004263
  • Zhao Y, Peng H. The Role of N(6)-Methyladenosine (m(6)A) Methylation Modifications in Hematological Malignancies. Cancers. 2022;14(2):548.
  • Li J, Li Z, Bai X, et al. LncRNA UCA1 Promotes the Progression of AML by Upregulating the Expression of CXCR4 and CYP1B1 by Affecting the Stability of METTL14. J Oncol. 2022;2022:2756986. doi:10.1155/2022/2756986
  • Yang LR, Lin ZY, Hao QG, et al. The prognosis biomarkers based on m6A-related lncRNAs for myeloid leukemia patients. Cancer Cell Int. 2022;22(1):10. doi:10.1186/s12935-021-02428-3
  • Zheng G, Liu M, Chang X, et al. Comprehensive Analysis of N6-Methyladenosine-Related Long Noncoding RNA Prognosis of Acute Myeloid Leukemia and Immune Cell Infiltration. Front Genet. 2022;13:888173. doi:10.3389/fgene.2022.888173
  • Li Y, Zhao L, Li XF. Hypoxia and the Tumor Microenvironment. Technol Cancer Res Treat. 2021;20:15330338211036304. doi:10.1177/15330338211036304
  • Xu P, Hu K, Zhang P, et al. Hypoxia-mediated YTHDF2 overexpression promotes lung squamous cell carcinoma progression by activation of the mTOR/AKT axis. Cancer Cell Int. 2022;22(1):13. doi:10.1186/s12935-021-02368-y
  • An Y, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 2022;21(1):14. doi:10.1186/s12943-022-01500-4
  • Ouyang W, Jiang Y, Bu S, et al. A Prognostic Risk Score Based on Hypoxia-, Immunity-, and Epithelial to-Mesenchymal Transition-Related Genes for the Prognosis and Immunotherapy Response of Lung Adenocarcinoma. Front Cell Dev Biol. 2021;9:758777. doi:10.3389/fcell.2021.758777
  • Wang JZ, Zhu W, Han J, et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun. 2021;41(7):560–575. doi:10.1002/cac2.12158
  • Qing Y, Dong L, Gao L, et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m(6)A/PFKP/LDHB axis. Mol Cell. 2021;81(5):922–939 e9. doi:10.1016/j.molcel.2020.12.026
  • Su R, Dong L, Li C, et al. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m(6)A/MYC/CEBPA Signaling. Cell. 2018;172(1–2):90–105 e23. doi:10.1016/j.cell.2017.11.031
  • Lin R, Zhan M, Yang L, et al. Deoxycholic acid modulates the progression of gallbladder cancer through N(6)-methyladenosine-dependent microRNA maturation. Oncogene. 2020;39(26):4983–5000. doi:10.1038/s41388-020-1349-6
  • Szczerba BM, Castro-Giner F, Vetter M, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 2019;566(7745):553–557. doi:10.1038/s41586-019-0915-y
  • Yin H, Zhang X, Yang P, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12(1):1394. doi:10.1038/s41467-021-21514-8
  • Li X. The m(6) A-BindingProtein YTHDF1 Mediates Immune Evasion. Cancer Discov. 2019;9(4):461. doi:10.1158/2159-8290.CD-RW2019-019
  • Han D, Liu J, Chen C, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270–274. doi:10.1038/s41586-019-0916-x
  • Song H, Song J, Cheng M, et al. METTL3-mediated m(6)A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat Commun. 2021;12(1):5522. doi:10.1038/s41467-021-25803-0
  • Dong F, Qin X, Wang B, et al. ALKBH5 Facilitates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvironment. Cancer Res. 2021;81(23):5876–5888. doi:10.1158/0008-5472.CAN-21-1456
  • Qiu X, Yang S, Wang S, et al. M(6)A Demethylase ALKBH5 Regulates PD-L1 Expression and Tumor Immunoenvironment in Intrahepatic Cholangiocarcinoma. Cancer Res. 2021;81(18):4778–4793. doi:10.1158/0008-5472.CAN-21-0468
  • Gao Z, Xu J, Zhang Z, et al. A Comprehensive Analysis of METTL1 to Immunity and Stemness in Pan-Cancer. Front Immunol. 2022;13:795240. doi:10.3389/fimmu.2022.795240
  • Liu T, Zhang J, Lin C, et al. Molecular Characterization Clinical and Immunotherapeutic Characteristics of m5C Regulator NOP2 Across 33 Cancer Types. Front Cell Dev Biol. 2022;10:839136. doi:10.3389/fcell.2022.839136
  • Zeng X, Liao G, Li S, et al. Eliminating METTL1-mediated accumulation of PMN-MDSCs prevents hepatocellular carcinoma recurrence after radiofrequency ablation. Hepatology. 2022.
  • Tong X, Xiang Y, Hu Y, et al. NSUN2 Promotes Tumor Progression and Regulates Immune Infiltration in Nasopharyngeal Carcinoma. Front Oncol. 2022;12:788801. doi:10.3389/fonc.2022.788801
  • van Niel G, Carter DRF, Clayton A, et al. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nat Rev Mol Cell Biol. 2022;23(5):369–382. doi:10.1038/s41580-022-00460-3
  • Abu N, Rus Bakarurraini NAA. The interweaving relationship between extracellular vesicles and T cells in cancer. Cancer Lett. 2022;530:1–7. doi:10.1016/j.canlet.2021.12.007
  • Pastushenko I, Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol. 2019;29(3):212–226. doi:10.1016/j.tcb.2018.12.001
  • Mittal V. Epithelial Mesenchymal Transition in Tumor Metastasis. Annu Rev Pathol. 2018;13:395–412. doi:10.1146/annurev-pathol-020117-043854
  • Zhao X, Li X, Li X. Multiple roles of m(6)A methylation in epithelial-mesenchymal transition. Mol Biol Rep. 2022.
  • Tao M, Li X, He L, et al. Decreased RNA m(6)A methylation enhances the process of the epithelial mesenchymal transition and vasculogenic mimicry in glioblastoma. Am J Cancer Res. 2022;12(2):893–906.
  • Zhu Y, Peng X, Zhou Q, et al. METTL3-mediated m6A modification of STEAP2 mRNA inhibits papillary thyroid cancer progress by blocking the Hedgehog signaling pathway and epithelial-to-mesenchymal transition. Cell Death Dis. 2022;13(4):358. doi:10.1038/s41419-022-04817-6
  • Yue B, Song C, Yang L, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer. 2019;18(1):142. doi:10.1186/s12943-019-1065-4
  • Gu X, Zhou H, Chu Q, et al. Uncovering the Association Between m(5)C Regulator-Mediated Methylation Modification Patterns and Tumour Microenvironment Infiltration Characteristics in Hepatocellular Carcinoma. Front Cell Dev Biol. 2021;9:727935. doi:10.3389/fcell.2021.727935
  • Yuan H, Liu J, Zhao L, et al. Prognostic Risk Model and Tumor Immune Environment Modulation of m5C-Related LncRNAs in Pancreatic Ductal Adenocarcinoma. Front Immunol. 2021;12:800268. doi:10.3389/fimmu.2021.800268
  • Mabeta P, Hull R, Dlamini Z. LncRNAs and the Angiogenic Switch in Cancer: clinical Significance and Therapeutic Opportunities. Genes. 2022;13(1):152. doi:10.3390/genes13010152
  • Fu Z, Yuan Y. The role of tumor neogenesis pipelines in tumor progression and their therapeutic potential. Cancer Med. 2022. doi:10.1002/cam4.4979
  • Al-Ostoot FH, Salah S, Khamees HA, et al. Tumor angiogenesis: current challenges and therapeutic opportunities. Cancer Treat Res Commun. 2021;28:100422. doi:10.1016/j.ctarc.2021.100422
  • Guo YQ, Wang Q, Wang J-G, et al. METTL3 modulates m6A modification of CDC25B and promotes head and neck squamous cell carcinoma malignant progression. Exp Hematol Oncol. 2022;11(1):14. doi:10.1186/s40164-022-00256-3
  • Zhao Y, Kong L, Pei Z, et al. m7G Methyltransferase METTL1 Promotes Post-ischemic Angiogenesis via Promoting VEGFA mRNA Translation. Front Cell Dev Biol. 2021;9:642080. doi:10.3389/fcell.2021.642080
  • Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299–309. doi:10.1038/s41586-019-1730-1
  • Casale J, Patel P. Fluorouracil. In: StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC; 2022.
  • Wigmore PM, Mustafa S, El-Beltagy M, et al. Effects of 5-FU. Adv Exp Med Biol. 2010;678:157–164.
  • Ma YN, Hong Y-G, Yu G-Y, et al. LncRNA LBX2-AS1 promotes colorectal cancer progression and 5-fluorouracil resistance. Cancer Cell Int. 2021;21(1):501. doi:10.1186/s12935-021-02209-y
  • Jiang Z, Hou Z, Liu W, et al. Circular RNA protein tyrosine kinase 2 (circPTK2) promotes colorectal cancer proliferation, migration invasion and chemoresistance. Bioengineered. 2022;13(1):810–823. doi:10.1080/21655979.2021.2012952
  • Moon B, Chang S. Exosome as a Delivery Vehicle for Cancer Therapy. Cells. 2022;11(3):316. doi:10.3390/cells11030316
  • Pan S, Deng Y, Fu J, et al. N6‑methyladenosine upregulates miR‑181d‑5p in exosomes derived from cancer‑associated fibroblasts to inhibit 5‑FU sensitivity by targeting NCALD in colorectal cancer. Int J Oncol. 2022;60(2). doi:10.3892/ijo.2022.5304
  • Taketo K, Konno M, Asai A, et al. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int J Oncol. 2018;52(2):621–629. doi:10.3892/ijo.2017.4219
  • Volk MS, Matz GJ. Cis-platinum. Otolaryngol Head Neck Surg. 1983;91(5):585–587. doi:10.1177/019459988309100524
  • Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–378. doi:10.1016/j.ejphar.2014.07.025
  • Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31(15):1869–1883. doi:10.1038/onc.2011.384
  • Chen B, Jiang W, Huang Y, et al. N(7)-methylguanosine tRNA modification promotes tumorigenesis and chemoresistance through WNT/β-catenin pathway in nasopharyngeal carcinoma. Oncogene. 2022;41(15):2239–2253. doi:10.1038/s41388-022-02250-9
  • Liu Y, Yang C, Zhao Y, et al. Overexpressed methyltransferase-like 1 (METTL1) increased chemosensitivity of colon cancer cells to cisplatin by regulating miR-149-3p/S100A4/p53 axis. Aging. 2019;11(24):12328–12344. doi:10.18632/aging.102575
  • Zhou H, Meng M, Wang Z, et al. The Role of m5C-Related lncRNAs in Predicting Overall Prognosis and Regulating the Lower Grade Glioma Microenvironment. Front Oncol. 2022;12:814742. doi:10.3389/fonc.2022.814742
  • Nie S, Zhang L, Liu J, et al. ALKBH5-HOXA10 loop-mediated JAK2 m6A demethylation and cisplatin resistance in epithelial ovarian cancer. J Exp Clin Cancer Res. 2021;40(1):284. doi:10.1186/s13046-021-02088-1
  • Yu H, Yang X, Tang J, et al. ALKBH5 Inhibited Cell Proliferation and Sensitized Bladder Cancer Cells to Cisplatin by m6A-CK2α-Mediated Glycolysis. Mol Ther Nucleic Acids. 2021;23:27–41. doi:10.1016/j.omtn.2020.10.031
  • Duan JL, Chen W, Xie -J-J, et al. A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol Cancer. 2022;21(1):93. doi:10.1186/s12943-022-01537-5
  • Sun Y, Dong D, Xia Y, et al. YTHDF1 promotes breast cancer cell growth, DNA damage repair and chemoresistance. Cell Death Dis. 2022;13(3):230. doi:10.1038/s41419-022-04672-5
  • Jarosz-Biej M, Smolarczyk R, Cichoń T, et al. Tumor Microenvironment as A “Game Changer” in Cancer Radiotherapy. Int J Mol Sci. 2019;20(13):3212. doi:10.3390/ijms20133212
  • Visvanathan A, Patil V, Arora A, et al. Essential role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance and radioresistance. Oncogene. 2018;37(4):522–533. doi:10.1038/onc.2017.351
  • Xu Z, Peng B, Cai Y, et al. N6-methyladenosine RNA modification in cancer therapeutic resistance: current status and perspectives. Biochem Pharmacol. 2020;182:114258. doi:10.1016/j.bcp.2020.114258
  • Mohd Idris RA, Mussa A, Ahmad S, et al. The Effects of Tamoxifen on Tolerogenic Cells in Cancer. Biology. 2022;11(8):1225. doi:10.3390/biology11081225
  • Liu X, Yuan J, Zhang X, et al. ATF3 Modulates the Resistance of Breast Cancer Cells to Tamoxifen through an N 6 -Methyladenosine-Based Epitranscriptomic Mechanism. Chem Res Toxicol. 2021;34(7):1814–1821. doi:10.1021/acs.chemrestox.1c00206
  • Liu X, Gonzalez G, Dai X, et al. Adenylate Kinase 4 Modulates the Resistance of Breast Cancer Cells to Tamoxifen through an m(6) A-BasedEpitranscriptomic Mechanism. Mol Ther. 2020;28(12):2593–2604. doi:10.1016/j.ymthe.2020.09.007
  • Wang W, Shao F, Yang X, et al. METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N(6)-methyladenosine-dependent YTHDF binding. Nat Commun. 2021;12(1):3803. doi:10.1038/s41467-021-23501-5
  • Fan HN, Chen Z-Y, Chen X-Y, et al. METTL14-mediated m(6)A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol Cancer. 2022;21(1):51. doi:10.1186/s12943-022-01521-z
  • Deng LJ, Deng W-Q, Fan S-R, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer. 2022;21(1):52. doi:10.1186/s12943-022-01510-2
  • Abdelgalil AA, Alkahtani HM, Al-Jenoobi FI. Sorafenib. Profiles Drug Subst Excip Relat Methodol. 2019;44:239–266.
  • Xia S, Pan Y, Liang Y, et al. The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine. 2020;51:102610. doi:10.1016/j.ebiom.2019.102610
  • Kong H, Sun J, Zhang W, et al. Long intergenic non-protein coding RNA 1273 confers sorafenib resistance in hepatocellular carcinoma via regulation of methyltransferase 3. Bioengineered. 2022;13(2):3108–3121. doi:10.1080/21655979.2022.2025701
  • Xu J, Wan Z, Tang M, et al. N(6)-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling. Mol Cancer. 2020;19(1):163. doi:10.1186/s12943-020-01281-8
  • Xiang Y, Guo Z, Zhu P, et al. Traditional Chinese medicine as a cancer treatment: modern perspectives of ancient but advanced science. Cancer Med. 2019;8(5):1958–1975. doi:10.1002/cam4.2108
  • Zhang X, Qiu H, Li C, et al. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer. Biosci Trends. 2021;15(5):283–298. doi:10.5582/bst.2021.01318
  • Wu Y, Chen X, Bao W, et al. Effect of Humantenine on mRNA m6A Modification and Expression in Human Colon Cancer Cell Line HCT116. Genes. 2022;13(5):781. doi:10.3390/genes13050781
  • Jiang H, Yao Q, An Y, et al. Baicalin suppresses the progression of Type 2 diabetes-induced liver tumor through regulating METTL3/m(6)A/HKDC1 axis and downstream p-JAK2/STAT1/clevaged Capase3 pathway. Phytomedicine. 2022;94:153823. doi:10.1016/j.phymed.2021.153823
  • Wang H, Wei W, Zhang Z-Y, et al. TCF4 and HuR mediated-METTL14 suppresses dissemination of colorectal cancer via N6-methyladenosine-dependent silencing of ARRDC4. Cell Death Dis. 2022;13(1):3. doi:10.1038/s41419-021-04459-0
  • Luo M, Huang Z, Yang X, et al. PHLDB2 Mediates Cetuximab Resistance via Interacting With EGFR in Latent Metastasis of Colorectal Cancer. Cell Mol Gastroenterol Hepatol. 2022;13(4):1223–1242. doi:10.1016/j.jcmgh.2021.12.011
  • Guimarães-Teixeira C, Lobo J, Miranda‐Gonçalves V, et al. Downregulation of m 6 A writer complex member METTL14 in bladder urothelial carcinoma suppresses tumor aggressiveness. Mol Oncol. 2022;16:1841–1856. doi:10.1002/1878-0261.13181
  • Zhao C, Ling X, Xia Y, et al. LncRNA UCA1 promotes SOX12 expression in breast cancer by regulating m(6)A modification of miR-375 by METTL14 through DNA methylation. Cancer Gene Ther. 2022;29:1043–1055. doi:10.1038/s41417-021-00390-w
  • Xie Q, Li Z, Luo X, et al. piRNA-14633 promotes cervical cancer cell malignancy in a METTL14-dependent m6A RNA methylation manner. J Transl Med. 2022;20(1):51. doi:10.1186/s12967-022-03257-2
  • Wei YS, Yao DS, Li L, et al. METTL14在卵巢上皮性癌组织中的表达及对A2780、SKOV3细胞增殖、侵袭和迁移的影响 [Expression of METTL14 in epithelial ovarian cancer and the effect on cell proliferation, invasion and migration of A2780 and SKOV3 cells]. Zhonghua Fu Chan Ke Za Zhi. 2022;57(1):46–56. Chinese. doi:10.3760/cma.j.cn112141-20210925-00553
  • Geng Y, Guan R, Hong W, et al. Identification of m6A-related genes and m6A RNA methylation regulators in pancreatic cancer and their association with survival. Ann Transl Med. 2020;8(6):387. doi:10.21037/atm.2020.03.98
  • Yankova E, Blackaby W, Albertella M, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593(7860):597–601. doi:10.1038/s41586-021-03536-w
  • Sang L, Wu X, Yan T, et al. The m 6 A RNA methyltransferase METTL3/METTL14 promotes leukemogenesis through the mdm2/p53 pathway in acute myeloid leukemia. J Cancer. 2022;13(3):1019–1030. doi:10.7150/jca.60381
  • Liu X, Du Y, Huang Z, et al. Insights into roles of METTL14 in tumors. Cell Prolif. 2022;55(1):e13168. doi:10.1111/cpr.13168
  • Guan Q, Lin H, Miao L, et al. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. J Hematol Oncol. 2022;15(1):13. doi:10.1186/s13045-022-01231-5
  • Su R, Dong L, Li Y, et al. Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion. Cancer Cell. 2020;38(1):79–96.e11. doi:10.1016/j.ccell.2020.04.017
  • Zheng S, Han H, Lin S. N(6)-methyladenosine (m(6)A) RNA modification in tumor immunity. Cancer Biol Med. 2022. doi:10.20892/j.issn.2095-3941.2021.0534
  • Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411(6835):342–348. doi:10.1038/35077213
  • Morales-Valencia J, David G. The origins of cancer cell dormancy. Curr Opin Genet Dev. 2022;74:101914. doi:10.1016/j.gde.2022.101914
  • Peng J, Ma Y, Zhao X, et al. Constitutive β-Catenin Overexpression Represses Lncrna MIR100HG Transcription via HDAC6-Mediated Histone Modification in Colorectal Cancer. Mol Cancer Res. 2022;20(6):949–959. doi:10.1158/1541-7786.MCR-21-0923
  • Chen J, Zhuang Y, Wang P, et al. Reducing N6AMT1-mediated 6mA DNA modification promotes breast tumor progression via transcriptional repressing cell cycle inhibitors. Cell Death Dis. 2022;13(3):216. doi:10.1038/s41419-022-04661-8
  • Phillips EON, Gunjan A. Histone variants: the unsung guardians of the genome. DNA Repair. 2022;112:103301. doi:10.1016/j.dnarep.2022.103301
  • Sheng Y, Wei J, Yu F, et al. A critical role of nuclear m6A reader YTHDC1 in leukemogenesis by regulating MCM complex-mediated DNA replication. Blood. 2021;138(26):2838–2852. doi:10.1182/blood.2021011707
  • Kan RL, Chen J, Sallam T. Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation. Trends Genet. 2022;38(2):182–193. doi:10.1016/j.tig.2021.06.014
  • Ohshiro T, Asai A, Konno M, et al. Direct observation of DNA alterations induced by a DNA disruptor. Sci Rep. 2022;12(1):6945. doi:10.1038/s41598-022-10725-8
  • Liu X, Rong F, Tang J, et al. Repression of p53 function by SIRT5-mediated desuccinylation at Lysine 120 in response to DNA damage. Cell Death Differ. 2022;29(4):722–736. doi:10.1038/s41418-021-00886-w
  • Wen J, Wang D. Deciphering the PTM codes of the tumor suppressor p53. J Mol Cell Biol. 2022;13(11):774–785. doi:10.1093/jmcb/mjab047
  • Wang YH, Ho TLF, Hariharan A, et al. Rapid recruitment of p53 to DNA damage sites directs DNA repair choice and integrity. Proc Natl Acad Sci U S A. 2022;119(10):e2113233119. doi:10.1073/pnas.2113233119
  • Zheng H, Zhu M, Li W, et al. m 5 C and m 6 A modification of long noncoding NKILA accelerates cholangiocarcinoma progression via the miR-582-3p-YAP1 axis. Liver Int. 2022;42:1144–1157. doi:10.1111/liv.15240
  • Song W, Ren J, Xiang R, et al. Cross-Talk Between m(6)A- and m(5) C-RelatedlncRNAs to Construct a Novel Signature and Predict the Immune Landscape of Colorectal Cancer Patients. Front Immunol. 2022;13:740960. doi:10.3389/fimmu.2022.740960
  • Wu S, Makeudom A, Sun X, et al. Overexpression of methyltransferase-like 3 and 14 in oral squamous cell carcinoma. J Oral Pathol Med. 2022;51(2):134–145. doi:10.1111/jop.13256