195
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Fibroblast Growth Factor 11 (FGF11) Promotes Progression and Cisplatin Resistance Through the HIF-1α/FGF11 Signaling Axis in Ovarian Clear Cell Carcinoma

ORCID Icon, ORCID Icon, , &
Pages 753-763 | Received 18 Apr 2023, Accepted 19 Jul 2023, Published online: 26 Jul 2023

References

  • Iida Y, Okamoto A, Hollis RL, et al. Clear cell carcinoma of the ovary: a clinical and molecular perspective. Int J Gynecol Cancer. 2021;31(4):605–616. doi:10.1136/ijgc-2020-001656
  • Pavlidis N, Rassy E, Vermorken JB, et al. The outcome of patients with serous papillary peritoneal cancer, fallopian tube cancer, and epithelial ovarian cancer by treatment eras: 27 years data from the SEER registry. Cancer Epidemiol. 2021;75(102045):102045. doi:10.1016/j.canep.2021.102045
  • Ogasawara A, Sato S, Hasegawa K. Current and future strategies for treatment of ovarian clear cell carcinoma. J Obstet Gynaecol Res. 2020;46(9):1678–1689. doi:10.1111/jog.14350
  • Boussios S, Rassy E, Moschetta M, et al. BRCA mutations in ovarian and prostate cancer: bench to bedside. Cancers. 2022;14(16):3888. doi:10.3390/cancers14163888
  • Revythis A, Limbu A, Mikropoulos C, et al. Recent insights into PARP and immuno-checkpoint inhibitors in epithelial ovarian cancer. Int J Environ Res Public Health. 2022;19(14):8577. doi:10.3390/ijerph19148577
  • Matsuzaki S, Yoshino K, Ueda Y, et al. Potential targets for ovarian clear cell carcinoma: a review of updates and future perspectives. Cancer Cell Int. 2015;15(117). doi:10.1186/s12935-015-0267-0
  • Buechel M, Herzog TJ, Westin SN, et al. Treatment of patients with recurrent epithelial ovarian cancer for whom platinum is still an option. Ann Oncol. 2019;30(5):721–732. doi:10.1093/annonc/mdz104
  • Kim A, Serada S, Enomoto T, et al. Targeting annexin A4 to counteract chemoresistance in clear cell carcinoma of the ovary. Expert Opin Ther Targets. 2010;14(9):963–971. doi:10.1517/14728222.2010.511180
  • Kitamura S, Yamaguchi K, Murakami R, et al. PDK2 leads to cisplatin resistance through suppression of mitochondrial function in ovarian clear cell carcinoma. Cancer Sci. 2021;112(11):4627–4640. doi:10.1111/cas.15125
  • Itamochi H, Kigawa J, Sugiyama T, et al. Low proliferation activity may be associated with chemoresistance in clear cell carcinoma of the ovary. Obstet Gynecol. 2002;100(2):281–287. doi:10.1016/s0029-7844(02)02040-9
  • Ghose A, Gullapalli N, Chohan N, et al. Applications of proteomics in ovarian cancer: dawn of a new era. Proteomes. 2022;10(2):16. doi:10.3390/proteomes10020016
  • Yin M, Lu C, Zhou H, et al. Differential molecular pathway expression according to chemotherapeutic response in ovarian clear cell carcinoma. BMC Womens Health. 2023;23(1):298. doi:10.1186/s12905-023-02420-1
  • Zheng M, Piao XM, Byun YJ, et al. Study on the use of Nanostring nCounter to analyze RNA extracted from formalin-fixed-paraffin-embedded and fresh frozen bladder cancer tissues. Cancer Genet. 2022;2022:268–269.
  • Lyu C, Zhang Y, Zhou X, et al. ARID1A gene silencing reduces the sensitivity of ovarian clear cell carcinoma to cisplatin. Exp Ther Med. 2016;12(6):4067–4071. doi:10.3892/etm.2016.3863
  • Devlin J, Miller R, Laforets F, et al. The tumor microenvironment of clear-cell ovarian canCer. Cancer Immunol Res. 2022;10(11):1326–1339. doi:10.1158/2326-6066.CIR-22-0407
  • Ioannidou E, Moschetta M, Shah S, et al. Angiogenesis and anti-angiogenic treatment in prostate cancer: mechanisms of action and molecular targets. Int J Mol Sci. 2021;22(18):9926. doi:10.3390/ijms22189926
  • Wang X, Du W, Xu M, et al. HIF-1alpha is a rational target for future ovarian cancer therapies. Front Oncol. 2021;11(785111). doi:10.3389/fonc.2021.785111
  • Lee S, Garner I, Welch R, et al. Over-expression of hypoxia-inducible factor 1 alpha in ovarian clear cell carcinoma. Gynecol Oncol. 2007;106(2):311–317. doi:10.1016/j.ygyno.2007.03.041
  • Chen B, Feng M, Yao Z, et al. Hypoxia promotes thyroid cancer progression through HIF1alpha/FGF11 feedback loop. Exp Cell Res. 2022;416(1):113159. doi:10.1016/j.yexcr.2022.113159
  • Stewart J, Cunningham N, Banerjee S. New therapies for clear cell ovarian carcinoma. Int J Gynecol Cancer. 2023;33(3):385–393. doi:10.1136/ijgc-2022-003704
  • Khalaf K, Hana D, Chou T, et al. Aspects of the tumor microenvironment involved in immune resistance and drug resistance. Front Immunol. 2021;12(656364). doi:10.3389/fimmu.2021.656364
  • Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18(1):157. doi:10.1186/s12943-019-1089-9
  • Jin Y, Wang H, Liang X, et al. Pathological and prognostic significance of hypoxia-inducible factor 1alpha expression in epithelial ovarian cancer: a meta-analysis. Tumour Biol. 2014;35(8):8149–8159. doi:10.1007/s13277-014-2059-x
  • Klemba A, Bodnar L, Was H, et al. Hypoxia-mediated decrease of ovarian cancer cells reaction to treatment: significance for chemo- and immunotherapies. Int J Mol Sci. 2020;21(24):9492. doi:10.3390/ijms21249492
  • Kato M, Yamamoto S, Takano M, et al. Aberrant expression of the mammalian target of rapamycin, hypoxia-inducible factor-1alpha, and glucose transporter 1 in the development of ovarian clear-cell adenocarcinoma. Int J Gynecol Pathol. 2012;31(3):254–263. doi:10.1097/PGP.0b013e318237d66c
  • Hui Q, Jin Z, Li X, et al. FGF family: from drug development to clinical application. Int J Mol Sci. 2018;19(7):1875. doi:10.3390/ijms19071875
  • Mahapatra S, Jonniya A, Koirala S, et al. The FGF/FGFR signalling mediated anti-cancer drug resistance and therapeutic intervention. J Biomol Struct Dyn. 2023;2023:1–25.
  • Ghedini C, Ronca R, Presta M, et al. Future applications of FGF/FGFR inhibitors in cancer. Expert Rev Anticancer Ther. 2018;18(9):861–872. doi:10.1080/14737140.2018.1491795
  • Ye B, Zhang H, Cai T, et al. Exosomal miR-24-3p impedes T-cell function by targeting FGF11 and serves as a potential prognostic biomarker for nasopharyngeal carcinoma. J Pathol. 2016;240(3):329–340. doi:10.1002/path.4781
  • Hu S, Li L, Yeh S, et al. Infiltrating T cells promote prostate cancer metastasis via modulation of FGF11-->miRNA-541-->androgen receptor (AR)-->MMP9 signaling. Mol Oncol. 2015;9(1):44–57. doi:10.1016/j.molonc.2014.07.013
  • Wu X, Li M, Li Y, et al. Fibroblast growth factor 11 (FGF11) promotes non-small cell lung cancer (NSCLC) progression by regulating hypoxia signaling pathway. J Transl Med. 2021;19(1):353. doi:10.1186/s12967-021-03018-7
  • Weaver A, Bossaer JB. Fibroblast growth factor receptor (FGFR) inhibitors: a review of a novel therapeutic class. J Oncol Pharm Pract. 2021;27(3):702–710. doi:10.1177/1078155220983425
  • Zhai B, Wu J, Li T. Fibroblast growth factor 11 enables tumor cell immune escape by promoting T cell exhaustion and predicts poor prognosis in patients with lung adenocarcinoma. J Oncol. 2023;2023(9303632):1–13. doi:10.1155/2023/9303632
  • Flon H, Haeggblom L, Holzhauser S, et al. High levels of FGF11 correlate with poor survival in patients with Human Papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma. Cancers. 2023;15(7):1954. doi:10.3390/cancers15071954
  • Yang J, Kim WJ, Jun HO, et al. Hypoxia-induced fibroblast growth factor 11 stimulates capillary-like endothelial tube formation. Oncol Rep. 2015;34(5):2745–2751. doi:10.3892/or.2015.4223
  • Lee W, Yim S, Shin J, et al. FGF11 induced by hypoxia interacts with HIF-1alpha and enhances its stability. FEBS Lett. 2017;591(2):348–357. doi:10.1002/1873-3468.12547