194
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Exploring the Expression and Prognosis of Mismatch Repair Proteins and PD-L1 in Colorectal Cancer in a Chinese Cohort

, , , , , , , , & ORCID Icon show all
Pages 791-801 | Received 29 Apr 2023, Accepted 14 Jul 2023, Published online: 07 Aug 2023

References

  • Kishore C, Bhadra P. Current advancements and future perspectives of immunotherapy in colorectal cancer research. Eur J Pharmacol. 2021;893:173819. doi:10.1016/j.ejphar.2020.173819
  • Ganesh K, Stadler ZK, Cercek A, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 2019;16(6):361–375. doi:10.1038/s41575-019-0126-x
  • Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–413. doi:10.1126/science.aan6733
  • Germani M, Moretto R. Immune checkpoint inhibitors in mismatch repair proficient/microsatellite stable metastatic colorectal cancer patients: insights from the AtezoTRIBE and MAYA trials. Cancers. 2021;14(1):52. doi:10.3390/cancers14010052
  • Schrock AB, Ouyang C, Sandhu J, et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann Oncol. 2019;30(7):1096–1103. doi:10.1093/annonc/mdz134
  • Boland CR, Thibodeau SN, Hamilton SR, et al. A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248–5257.
  • Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135(4):1079–1099. doi:10.1053/j.gastro.2008.07.076
  • Alwers E, Jansen L, Bläker H, et al. Microsatellite instability and survival after adjuvant chemotherapy among stage II and III colon cancer patients: results from a population-based study. Mol Oncol. 2020;14(2):363–372. doi:10.1002/1878-0261.12611
  • Koenig JL, Toesca DAS, Harris JP, et al. Microsatellite instability and adjuvant chemotherapy in stage II colon cancer. Am J Clin Oncol. 2019;42(7):573–580. doi:10.1097/COC.0000000000000554
  • Taieb J, Shi Q, Pederson L, et al. Prognosis of microsatellite instability and/or mismatch repair deficiency stage III colon cancer patients after disease recurrence following adjuvant treatment: results of an ACCENT pooled analysis of seven studies. Ann Oncol. 2019;30(9):1466–1471. doi:10.1093/annonc/mdz208
  • Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349(3):247–257. doi:10.1056/NEJMoa022289
  • Wainberg Z, Fuchs C, Tabernero J, et al. Efficacy of pembrolizumab (pembro) monotherapy versus chemotherapy for PD-L1–positive (CPS ≥10) advanced G/GEJ cancer in the Phase II KEYNOTE-059 (cohort 1) and Phase III KEYNOTE-061 and KEYNOTE-062 studies. J Clin Oncol. 2020;38(4_suppl):427. doi:10.1200/JCO.2020.38.4_suppl.427
  • De Marchi P, Leal LF, Duval Da Silva V, et al. PD-L1 expression by Tumor Proportion Score (TPS) and Combined Positive Score (CPS) are similar in non-small cell lung cancer (NSCLC). J Clin Pathol. 2021;74(11):735–740. doi:10.1136/jclinpath-2020-206832
  • Carter JM, Polley MC, Leon-Ferre RA, et al. Characteristics and spatially defined immune (micro)landscapes of Early-stage PD-L1-positive triple-negative breast cancer. Clin Cancer Res. 2021;27(20):5628. doi:10.1158/1078-0432.CCR-21-0343
  • Yamashita K, Iwatsuki M, Harada K, et al. Prognostic impacts of the combined positive score and the tumor proportion score for programmed death ligand-1 expression by double immunohistochemical staining in patients with advanced gastric cancer. Gast Cancer. 2020;23(1):95–104. doi:10.1007/s10120-019-00999-9
  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. doi:10.3322/caac.21654
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Le DT, Kim TW, Van Cutsem E, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer KEYNOTE-164. J Clin Oncol. 2020;38(1):11–19. doi:10.1200/JCO.19.02107
  • Salem ME, Bodor JN, Puccini A, et al. Relationship between MLH1, PMS2, MSH2 and MSH6 gene-specific alterations and tumor mutational burden in 1057 microsatellite instability-high solid tumors. Int J Cancer. 2020;147(10):2948–2956. doi:10.1002/ijc.33115
  • Vilar E, Gruber SB. Microsatellite instability in colorectal cancer-The stable evidence. Nat Rev Clin Oncol. 2010;7(3):153–162. doi:10.1038/nrclinonc.2009.237
  • Guo TA, Wu YC, Tan C, et al. Clinicopathologic features and prognostic value of KRAS, NRAS and BRAF mutations and DNA mismatch repair status: a single-center retrospective study of 1834 Chinese patients with Stage I-IV colorectal cancer. Int J Cancer. 2019;145(6):1625–1634. doi:10.1002/ijc.32489
  • Wen F, Jing R, Yu W, et al. Correlation between the expression of four mismatch repair proteins and clinicopathological features of colorectal cancer in elderly patients. Chin J Geriatr. 2018;1:54–56.
  • Xiao H, Can X, Ye K, et al. Correlation between mismatch-repair protein expression and clinicopathologic features in 658 colorectal cancers. Chin J Pathol. 2018;11:827–833.
  • Yang H, Yu Z, Xiang S, et al. Analysis of mismatch repair protein expression and clinicopathological characteristics in radical resection specimens of colorectal cancer based on random forest algorithm. Chin J Cancer Prev Treat. 2022;29(06):408–413.
  • Ping H, Li L, Qiu W, et al. Detection of mismatch repair protein MLH1 and PMS2 expression in colorectal cancer tissues by optimized automatic immunohistochemical staining scheme. J Mod Oncol. 2021;29(13):2254–2257.
  • Huil YS, Xiang L. Expression of MLH1, MSH2, MSH6 and PMS2 proteins in colorectal cancer and their significance in the screening of Lynch syndrome. Chin J Clin Exp Pathol. 2017;33(04):360–364.
  • Morgan S, Slodkowska E, Parra-Herran C, et al. PD -L1, RB 1 and mismatch repair protein immunohistochemical expression in neuroendocrine carcinoma, small cell type, of the uterine cervix. Histopathology. 2019;74(7):997–1004. doi:10.1111/his.13825
  • Berntsson J, Eberhard J, Nodin B, et al. Expression of programmed cell death protein 1 (PD-1) and its ligand PD-L1 in colorectal cancer: relationship with sidedness and prognosis. Oncoimmunology. 2018;7(8):e1465165. doi:10.1080/2162402X.2018.1465165
  • Kir G, Olgun ZC, Soylemez T, et al. PD-L1 expression in mismatch repair-deficient endometrial carcinoma and tumor-associated immune cells: differences between MLH1 methylated and nonmethylated subgroups. Int J Gynecol Pathol. 2021;40(6):575–586. doi:10.1097/PGP.0000000000000750
  • Gelsomino F, Barbolini M, Spallanzani A, et al. The evolving role of microsatellite instability in colorectal cancer: a review. Cancer Treat Rev. 2016;51:19–26. doi:10.1016/j.ctrv.2016.10.005
  • Xue H, Bin Z, Jun D, et al. Relevance between mismatch repair protein expression status and clinicopathological features of patients with stage II colorectal cancer and its impact on prognosis. Chin Med. 2021;16(05):725–728.
  • Chen L, Chen G, Zheng X, et al. Expression status of four mismatch repair proteins in patients with colorectal cancer: clinical significance in 1238 cases. Int J Clin Exp Pathol. 2019;12(10):3685–3699.
  • Jung KW, Won YJ, Hong S, et al. Prediction of cancer incidence and mortality in Korea, 2021. Cancer Res Treat. 2021;53(2):316–322. doi:10.4143/crt.2021.290
  • Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021;325(7):669–685. doi:10.1001/jama.2021.0106
  • Kahi CJ, Boland CR, Dominitz JA, et al. Colonoscopy surveillance after colorectal cancer resection: recommendations of the US multi-society task force on colorectal cancer. Am J Gastroenterol. 2016;111(3):337–46; quiz 47. doi:10.1038/ajg.2016.22
  • Sharma R, Abbasi-Kangevari M, Abd-Rabu R, et al. Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet Gastroenterol Hepatol. 2022;7(7):627–647. doi:10.1016/S2468-1253(22)00044-9
  • Hao C, Jun Q, Yu H. Research progress on the FOLFOXIRI regimen as first-line therapy for advanced colorectal cancer. Chin Clin Oncol. 2021;48(11):587–592.
  • Hong M, Qi Z, Xian Z. Advances in research on maintenance therapy of metastatic colorectal cancer. J Mod Oncol. 2021;29(02):361–364.
  • Akdeniz N, Kaplan MA, Uncu D, et al. The comparison of FOLFOX regimens with different doses of 5-FU for the adjuvant treatment of colorectal cancer: a multicenter study. Int J Colorectal Dis. 2021;36(6):1311–1319. doi:10.1007/s00384-021-03888-9
  • Benson AB, Venook AP, Cederquist L, et al. Colon Cancer, Version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2017;15(3):370–398. doi:10.6004/jnccn.2017.0036
  • Liu DX, Li DD, He W, et al. PD-1 blockade in neoadjuvant setting of DNA mismatch repair-deficient/microsatellite instability-high colorectal cancer. Oncoimmunology. 2020;9(1):1711650. doi:10.1080/2162402X.2020.1711650
  • Hu H, Kang L, Zhang J, et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, Phase 2 trial. Lancet Gastroenterol Hepatol. 2022;7(1):38–48. doi:10.1016/S2468-1253(21)00348-4
  • Dienstmann R, Vermeulen L, Guinney J, et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 2017;17(2):79–92. doi:10.1038/nrc.2016.126
  • Jiang X, Wang J, Deng X, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;18(1):10. doi:10.1186/s12943-018-0928-4
  • Lecocq Q, Keyaerts M, Devoogdt N, et al. The next-generation immune checkpoint LAG-3 and its therapeutic potential in oncology: third time’s a charm. Int J Mol Sci. 2020;22(1):75. doi:10.3390/ijms22010075
  • Gaikwad S, Agrawal MY, Kaushik I, et al. Immune checkpoint proteins: signaling mechanisms and molecular interactions in cancer immunotherapy. Semin Cancer Biol. 2022;86(Pt 3):137–150. doi:10.1016/j.semcancer.2022.03.014
  • Lizardo DY, Kuang C, Hao S, et al. Immunotherapy efficacy on mismatch repair-deficient colorectal cancer: from bench to bedside. Biochim Biophys Acta Rev Cancer. 2020;1874(2):188447. doi:10.1016/j.bbcan.2020.188447
  • Paterson AM, Brown KE, Keir ME, et al. The programmed death-1 ligand 1: B7-1 pathway restrains diabetogenic effector T cells in vivo. J Immunol. 2011;187(3):1097–1105. doi:10.4049/jimmunol.1003496
  • Li Y, Liang L, Dai W, et al. Prognostic impact of programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer. Mol Cancer. 2016;15(1):55. doi:10.1186/s12943-016-0539-x
  • Gao Q, Wang XY, Qiu SJ, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15(3):971–979. doi:10.1158/1078-0432.CCR-08-1608
  • Hu K, Wang ZM, N LJ, et al. CLEC1B expression and PD-L1 expression predict clinical outcome in hepatocellular carcinoma with tumor hemorrhage. Transl Oncol. 2018;11(2):552–558. doi:10.1016/j.tranon.2018.02.010
  • Wang S, Yuan B, Wang Y, et al. Clinicopathological and prognostic significance of PD-L1 expression in colorectal cancer: a meta-analysis. Int J Colorectal Dis. 2021;36(1):117–130. doi:10.1007/s00384-020-03734-4
  • Zhao T, Li Y, Zhang J, et al. PD-L1 expression increased by IFN-γ via JAK2-STAT1 signaling and predicts a poor survival in colorectal cancer. Oncol Lett. 2020;20(2):1127–34.7. doi:10.3892/ol.2020.11647
  • Tang M, Zheng Z, Shang J, et al. Risk analysis of positive PD-L1 expression and clinicopathological features and survival prognosis in patients with colorectal cancer: systematic review and meta-analysis. J Healthc Eng. 2022;2022:8212486. doi:10.1155/2022/8212486
  • Hsieh RC, Krishnan S, Wu RC, et al. ATR-mediated CD47 and PD-L1 up-regulation restricts radiotherapy-induced immune priming and abscopal responses in colorectal cancer. Sci Immunol. 2022;7(72):eabl9330. doi:10.1126/sciimmunol.abl9330
  • Thibaudin M, Limagne E, Hampe L, et al. Targeting PD-L1 and TIGIT could restore intratumoral CD8 T cell function in human colorectal cancer. Cancer Immunol Immunother. 2022;71(10):2549–2563. doi:10.1007/s00262-022-03182-9