152
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Large-Scale Identification of Lysine Crotonylation Reveals Its Potential Role in Oral Squamous Cell Carcinoma

ORCID Icon, ORCID Icon, , , , , ORCID Icon & show all
Pages 1165-1179 | Received 17 Jul 2023, Accepted 11 Oct 2023, Published online: 17 Oct 2023

References

  • Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications — cause and consequence of genome function. Nat Rev Genet. 2022;23:563–580. doi:10.1038/s41576-022-00468-7
  • Deng G, Song X, Fujimoto S, Piccirillo CA, Nagai Y, Greene MI. Foxp3 Post-translational Modifications and Treg Suppressive Activity. Front Immunol. 2019;10:2486. doi:10.3389/fimmu.2019.02486
  • Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15:703–708. doi:10.1038/nrm3890
  • Adoni KR, Cunningham DL, Heath JK, Leney AC. FAIMS Enhances the Detection of PTM Crosstalk Sites. J Proteome Res. 2022;21:930–939. doi:10.1021/acs.jproteome.1c00721
  • Wang S, Osgood AO, Chatterjee A. Uncovering post-translational modification-associated protein–protein interactions. Curr Opin Struct Biol. 2022;74:102352. doi:10.1016/j.sbi.2022.102352
  • Lee JM, Hammarén HM, Savitski MM, Baek SH. Control of protein stability by post-translational modifications. Nat Commun. 2023;14:201. doi:10.1038/s41467-023-35795-8
  • Pan S, Chen R. Pathological implication of protein post-translational modifications in cancer. Mol Aspects Med. 2022;86:101097. doi:10.1016/j.mam.2022.101097
  • Grubisha MJ, Sweet RA, MacDonald ML. Investigating Post-translational Modifications in Neuropsychiatric Disease: the Next Frontier in Human Post-mortem Brain Research. Front Mol Neurosci. 2021;14:689495. doi:10.3389/fnmol.2021.689495
  • Song B-J, Akbar M, Abdelmegeed MA, et al. Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications. Redox Biol. 2014;3:109–123. doi:10.1016/j.redox.2014.10.004
  • Tan M, Luo H, Lee S, et al. Identification of 67 Histone Marks and Histone Lysine Crotonylation as a New Type of Histone Modification. Cell. 2011;146:1016–1028. doi:10.1016/j.cell.2011.08.008
  • Sabari BR, Zhang D, Allis CD, Zhao Y. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol. 2017;18:90–101. doi:10.1038/nrm.2016.140
  • Xu W, Wan J, Zhan J, et al. Global profiling of crotonylation on non-histone proteins. Cell Res. 2017;27:946–949. doi:10.1038/cr.2017.60
  • Liu Y, Li Y, Liang J, Sun Z, Sun C. Non-Histone Lysine Crotonylation Is Involved in the Regulation of White Fat Browning. IJMS. 2022;23:12733. doi:10.3390/ijms232112733
  • Hou J-Y, Zhou L, J-L L, Wang D-P, Cao J-M. Emerging roles of non-histone protein crotonylation in biomedicine. Cell Biosci. 2021;11:101. doi:10.1186/s13578-021-00616-2
  • Liu S, Yu H, Liu Y, et al. Chromodomain Protein CDYL Acts as a Crotonyl-CoA Hydratase to Regulate Histone Crotonylation and Spermatogenesis. Mol Cell. 2017;67:853–866.e5. doi:10.1016/j.molcel.2017.07.011
  • Jiang G, Li C, Lu M, Lu K, Li H. Protein lysine crotonylation: past, present, perspective. Cell Death Dis. 2021;12:703. doi:10.1038/s41419-021-03987-z
  • Solomon B, Young RJ, Rischin D. Head and neck squamous cell carcinoma: genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin Cancer Biol. 2018;52(Pt 2):228–240. doi:10.1016/j.semcancer
  • Zhou W, Feng Y, Lin C, et al. Yin Yang 1-Induced Long Noncoding RNA DUXAP9 Drives the Progression of Oral Squamous Cell Carcinoma by Blocking CDK1-Mediated EZH2 Degradation. Adv Sci. 2023;10(25):e2207549. doi:10.1002/advs.202207549
  • Li L, Chen L, Li Z, et al. FSCN1 promotes proliferation, invasion and glycolysis via the IRF4/AKT signaling pathway in oral squamous cell carcinoma. BMC Oral Health. 2023;23(1):519. doi:10.1186/s12903-023-03191-9
  • Omori H, Nishio M, Masuda M, et al. YAP1 is a potent driver of the onset and progression of oral squamous cell carcinoma. Sci Adv. 2020;6(12):eaay3324. doi:10.1126/sciadv.aay332
  • Bhandari V, Hoey C, Liu LY, et al. Molecular landmarks of tumor hypoxia across cancer types. Nat Genet. 2019;51:308–318. doi:10.1038/s41588-018-0318-2
  • Wei Z, Yin X, Cai Y, et al. Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma. IJN. 2018;13:1505–1524. doi:10.2147/IJN.S156984
  • Yin X, Han S, Song C, et al. Metformin enhances gefitinib efficacy by interfering with interactions between tumor-associated macrophages and head and neck squamous cell carcinoma cells. Cell Oncol. 2019;42:459–475. doi:10.1007/s13402-019-00446-y
  • Yin X, Wei Z, Song C, et al. Metformin sensitizes hypoxia-induced gefitinib treatment resistance of HNSCC via cell cycle regulation and EMT reversal. CMAR. 2018;10:5785–5798. doi:10.2147/CMAR.S177473
  • Lin X, Liu YH, Zhang HQ, et al. DSCC1 interacts with HSP90AB1 and promotes the progression of lung adenocarcinoma via regulating ER stress. Cancer Cell Int. 2023;23(1):208. doi:10.1186/s12935-023-03047-w
  • Wang D, Wang R, Cai M, et al. Maggot Extract Inhibits Cell Migration and Tumor Growth by Targeting HSP90AB1 in Ovarian Cancer. J Clin Med. 2022;11(21):6271. doi:10.3390/jcm11216271
  • Jia L, Ge X, Du C, et al. EEF1A2 interacts with HSP90AB1 to promote lung adenocarcinoma metastasis via enhancing TGF-β/SMAD signalling. Br J Cancer. 2021;124(7):1301–1311. doi:10.1038/s41416-020-01250-4
  • Wang H, Deng G, Ai M, et al. Hsp90ab1 stabilizes LRP5 to promote epithelial-mesenchymal transition via activating of AKT and Wnt/β-catenin signaling pathways in gastric cancer progression. Oncogene. 2019;38(9):1489–1507. doi:10.1038/s41388-018-0532-5
  • Zhang H, Yin X, Zhang X, et al. HSP90AB1 Promotes the Proliferation, Migration, and Glycolysis of Head and Neck Squamous Cell Carcinoma. Technol Cancer Res Treat. 2022;21:153303382211182. doi:10.1177/15330338221118202
  • Zhang D, Tang J, Xu Y, et al. Global crotonylome reveals hypoxia-mediated lamin A crotonylation regulated by HDAC6 in liver cancer. Cell Death Dis. 2022;13:717. doi:10.1038/s41419-022-05165-1
  • Zhang X, Liu Z, Zhang Y, et al. SEPT2 crotonylation promotes metastasis and recurrence in hepatocellular carcinoma and is associated with poor survival. Cell Biosci. 2023;13:63. doi:10.1186/s13578-023-00996-7
  • Wan J, Liu H, Ming L. Lysine crotonylation is involved in hepatocellular carcinoma progression. Biomed Pharm. 2019;111:976–982. doi:10.1016/j.biopha.2018.12.148
  • Khanal J, Kandel J, Tayara H, Chong KT. CapsNh-Kcr: capsule network-based prediction of lysine crotonylation sites in human non-histone proteins. Comput Struct Biotechnol J. 2023;21:120–127. doi:10.1016/j.csbj.2022.11.056
  • Wang S, Mu G, Qiu B, et al. The Function and related Diseases of Protein Crotonylation. Int J Biol Sci. 2021;17(13):3441–3455. doi:10.7150/ijbs.58872
  • Zeng Z, Lei S, He Z, Chen T, Jiang J. YEATS2 is a target of HIF1α and promotes pancreatic cancer cell proliferation and migration. J Cell Physiol. 2021;236(3):2087–2098. doi:10.1002/jcp.29995
  • Sabari BR, Tang Z, Huang H, et al. Intracellular Crotonyl-CoA Stimulates Transcription through p300-Catalyzed Histone Crotonylation. Mol Cell. 2015;58:203–215. doi:10.1016/j.molcel.2015.02.029
  • Dai S-K, Liu -P-P, Li X, Jiao L-F, Teng Z-Q, Liu C-M. Dynamic profiling and functional interpretation of histone lysine crotonylation and lactylation during neural development. Development. 2022;149:dev200049. doi:10.1242/dev.200049
  • Liu X, Wei W, Liu Y, et al. MOF as an evolutionarily conserved histone crotonyltransferase and transcriptional activation by histone acetyltransferase-deficient and crotonyltransferase-competent CBP/p300. Cell Discov. 2017;3:17016. doi:10.1038/celldisc.2017.16
  • Andrews FH, Shinsky SA, Shanle EK, et al. The Taf14 YEATS domain is a reader of histone crotonylation. Nat Chem Biol. 2016;12:396–398. doi:10.1038/nchembio.2065
  • Bao X, Wang Y, Li X, et al. Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. eLife. 2014;3:e02999. doi:10.7554/eLife.02999
  • Wei W, Liu X, Chen J, et al. Class I histone deacetylases are major histone decrotonylases: evidence for critical and broad function of histone crotonylation in transcription. Cell Res. 2017;27:898–915. doi:10.1038/cr.2017.68
  • Wei W, Mao A, Tang B, et al. Large-Scale Identification of Protein Crotonylation Reveals Its Role in Multiple Cellular Functions. J Proteome Res. 2017;16:1743–1752. doi:10.1021/acs.jproteome.7b00012
  • Haase M, Fitze G. HSP90AB1: helping the good and the bad. Gene. 2016;575(2 Pt 1):171–186. doi:10.1016/j.gene.2015.08.063
  • Kosinsky RL, Helms M, Zerche M, et al. USP22-dependent HSP90AB1 expression promotes resistance to HSP90 inhibition in mammary and colorectal cancer. Cell Death Dis. 2019;10(12):911. doi:10.1038/s41419-019-2141-9
  • Wang D, Tang X, Ruan J, et al. HSP90AB1 as the Druggable Target of Maggot Extract Reverses Cisplatin Resistance in Ovarian Cancer. Oxid Med Cell Longev. 2023;2023:9335440. doi:10.1155/2023/9335440
  • Sun H, Liu X, Li F, et al. First comprehensive proteome analysis of lysine crotonylation in seedling leaves of Nicotiana tabacum. Sci Rep. 2017;7(1):3013. doi:10.1038/s41598-017-03369-
  • Liu K, Yuan C, Li H, et al. A qualitative proteome-wide lysine crotonylation profiling of papaya (Carica papaya L.). Sci Rep. 2018;8(1):8230. doi:10.1038/s41598-018-26676-y
  • Hou J-Y, Cao J, Gao L-J, et al. Upregulation of α enolase (ENO1) crotonylation in colorectal cancer and its promoting effect on cancer cell metastasis. Biochem Biophys Res Commun. 2021;578:77–83. doi:10.1016/j.bbrc.2021.09.027
  • Dong J, Li Y, Zheng F, et al. Co-occurrence of Protein Crotonylation and 2-Hydroxyisobutyrylation in the Proteome of End-Stage Renal Disease. ACS Omega. 2021;6(24):15782–15793. doi:10.1021/acsomega.1c01161