101
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

SIRT3 Expression Predicts Overall Survival and Neoadjuvant Chemosensitivity in Triple-Negative Breast Cancer

ORCID Icon & ORCID Icon
Pages 137-150 | Received 24 Oct 2023, Accepted 01 Mar 2024, Published online: 12 Mar 2024

References

  • Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Kashyap D, Pal D, Sharma R, et al. Global Increase in Breast Cancer Incidence: risk Factors and Preventive Measures. Biomed Res Int. 2022;2022:9605439. doi:10.1155/2022/9605439
  • Vagia E, Mahalingam D, Cristofanilli M. The Landscape of Targeted Therapies in TNBC. Cancers. 2020;12(4):916. doi:10.3390/cancers12040916
  • Li Y, Zhang H, Merkher Y, et al. Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol. 2022;15(1):121. doi:10.1186/s13045-022-01341-0
  • Jeong SM, Haigis MC. Sirtuins in Cancer: a Balancing Act between Genome Stability and Metabolism. Mol Cells. 2015;38(9):750–758. doi:10.14348/molcells.2015.0167
  • Guarente L. The many faces of sirtuins: sirtuins and the Warburg effect. Nat Med. 2014;20(1):24–25. doi:10.1038/nm.3438
  • Oellerich MF, Potente M. FOXOs and sirtuins in vascular growth, maintenance, and aging. Circ Res. 2012;110(9):1238–1251. doi:10.1161/CIRCRESAHA.111.246488
  • Merksamer PI. The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY). 2013;5(3):144–150. doi:10.18632/aging.100544
  • Ng F, Tang BL. Sirtuins’ modulation of autophagy. J Cell Physiol. 2013;228(12):2262–2270. doi:10.1002/jcp.24399
  • Wu QJ, Zhang T-N, Chen -H-H, et al. The sirtuin family in health and disease. Signal Transduct Target Ther. 2022;7(1):402. doi:10.1038/s41392-022-01257-8
  • Costa-Machado LF, Fernandez-Marcos PJ. The sirtuin family in cancer. Cell Cycle. 2019;18(18):2164–2196. doi:10.1080/15384101.2019.1634953
  • Dilmac S, Kuscu N, Caner A, et al. SIRT1/FOXO Signaling Pathway in Breast Cancer Progression and Metastasis. Int J Mol Sci. 2022;23(18):10227. doi:10.3390/ijms231810227
  • Tang X, Shi L, Xie N, et al. SIRT7 antagonizes TGF-beta signaling and inhibits breast cancer metastasis. Nat Commun. 2017;8(1):318. doi:10.1038/s41467-017-00396-9
  • Huo Q, Li Z, Cheng L, et al. SIRT7 Is a Prognostic Biomarker Associated With Immune Infiltration in Luminal Breast Cancer. Front Oncol. 2020;10:621. doi:10.3389/fonc.2020.00621
  • He S, He C, Yuan H, et al. The SIRT 3 expression profile is associated with pathological and clinical outcomes in human breast cancer patients. Cell Physiol Biochem. 2014;34(6):2061–2069. doi:10.1159/000366401
  • Zhang H, Ma C, Peng M, et al. The prognostic implications of SIRTs expression in breast cancer: a systematic review and meta-analysis. Discov Oncol. 2022;13(1):69. doi:10.1007/s12672-022-00529-7
  • Liu M, Yu J, Jin H, et al. Bioinformatics Analysis of the SIRT Family Members and Assessment of Their Potential Clinical Value. Onco Targets Ther. 2021;14:2635–2649. doi:10.2147/OTT.S298616
  • Desouki MM, Doubinskaia I, Gius D, et al. Decreased mitochondrial SIRT3 expression is a potential molecular biomarker associated with poor outcome in breast cancer. Hum Pathol. 2014;45(5):1071–1077. doi:10.1016/j.humpath.2014.01.004
  • Ciriello G, Gatza M, Beck A, et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell. 2015;163(2):506–519. doi:10.1016/j.cell.2015.09.033
  • Ning L, Huo Q, Xie N. Comprehensive Analysis of the Expression and Prognosis for Tripartite Motif-Containing Genes in Breast Cancer. Front Genet. 2022;13:876325. doi:10.3389/fgene.2022.876325
  • Chung W, Eum HH, Lee H-O, et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun. 2017;8(1):15081. doi:10.1038/ncomms15081
  • Curtis C, Shah SP, Chin S-F, et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–352. doi:10.1038/nature10983
  • Desmedt C, Di Leo A, de Azambuja E, et al. Multifactorial approach to predicting resistance to anthracyclines. J Clin Oncol. 2011;29(12):1578–1586. doi:10.1200/JCO.2010.31.2231
  • Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):l1. doi:10.1126/scisignal.2004088
  • Davidson-Pilon C. lifelines: survival analysis in Python. J Open Source Software. 2019;4(40):1317. doi:10.21105/joss.01317
  • Shi L, et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol. 2010;28(8):827–838.
  • Tabchy A, Valero V, Vidaurre T, et al. Evaluation of a 30-gene paclitaxel, fluorouracil, doxorubicin, and cyclophosphamide chemotherapy response predictor in a multicenter randomized trial in breast cancer. Clin Cancer Res. 2010;16(21):5351–5361. doi:10.1158/1078-0432.CCR-10-1265
  • Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–607. doi:10.1038/nature11003
  • Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–D646. doi:10.1093/nar/gkac1000
  • Fang Z, Liu X, Peltz G. GSEApy: a comprehensive package for performing gene set enrichment analysis in Python. Bioinformatics. 2023;39(1). doi:10.1093/bioinformatics/btac757
  • Finley LW, Carracedo A, Lee J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell. 2011;19(3):416–428. doi:10.1016/j.ccr.2011.02.014
  • Qiao A, Wang K, Yuan Y, et al. Sirt3-mediated mitophagy protects tumor cells against apoptosis under hypoxia. Oncotarget. 2016;7(28):43390. doi:10.18632/oncotarget.9717
  • Huang JY, Hirschey MD, Shimazu T, et al. Mitochondrial sirtuins. Biochim Biophys Acta. 2010;1804(8):1645–1651. doi:10.1016/j.bbapap.2009.12.021
  • Papa L, Germain D. SirT3 regulates the mitochondrial unfolded protein response. Mol Cell Biol. 2014;34(4):699–710. doi:10.1128/MCB.01337-13
  • Li R, Quan Y, Xia W. SIRT3 inhibits prostate cancer metastasis through regulation of FOXO3A by suppressing Wnt/beta-catenin pathway. Exp Cell Res. 2018;364(2):143–151. doi:10.1016/j.yexcr.2018.01.036
  • Wang L, Wang WY, Cao LP. SIRT3 inhibits cell proliferation in human gastric cancer through down-regulation of Notch-1. Int J Clin Exp Med. 2015;8(4):5263–5271.
  • Gonzalez Herrera KN, Hirschey MD, Shimazu T, et al. Small-Molecule Screen Identifies De Novo Nucleotide Synthesis as a Vulnerability of Cells Lacking SIRT3. Cell Rep. 2018;22(8):1945–1955. doi:10.1016/j.celrep.2018.01.076
  • Torrens-Mas M, Oliver J, Roca P, et al. SIRT3: oncogene and Tumor Suppressor in Cancer. Cancers. 2017;9(7):90. doi:10.3390/cancers9070090
  • Quan Y, Wang N, Chen Q, et al. SIRT3 inhibits prostate cancer by destabilizing oncoprotein c-MYC through regulation of the PI3K/Akt pathway. Oncotarget. 2015;6(28):26494–26507. doi:10.18632/oncotarget.4764
  • Zhao Q, Zhou J, Li F, et al. The Role and Therapeutic Perspectives of Sirtuin 3 in Cancer Metabolism Reprogramming, Metastasis, and Chemoresistance. Front Oncol. 2022;12:910963. doi:10.3389/fonc.2022.910963
  • Wei Z, Song J, Wang G, et al. Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat Commun. 2018;9(1):4468. doi:10.1038/s41467-018-06812-y
  • Cui Y, Qin L, Wu J, et al. SIRT3 Enhances Glycolysis and Proliferation in SIRT3-Expressing Gastric Cancer Cells. PLoS One. 2015;10(6):e0129834. doi:10.1371/journal.pone.0129834
  • Yang GC, Fu B-C, Zhang D-Y, et al. The Expression and Related Clinical Significance of SIRT3 in Non-Small-Cell Lung Cancer. Dis Markers. 2017;2017:8241953. doi:10.1155/2017/8241953
  • Liu H, Li S, Liu X, et al. SIRT3 Overexpression Inhibits Growth of Kidney Tumor Cells and Enhances Mitochondrial Biogenesis. J Proteome Res. 2018;17(9):3143–3152. doi:10.1021/acs.jproteome.8b00260
  • Oshi M, Angarita FA, Tokumaru Y, et al. A Novel Three-Gene Score as a Predictive Biomarker for Pathologically Complete Response after Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Cancers. 2021;13(10):2401. doi:10.3390/cancers13102401
  • Yao S, Fan LY, Lam EW. The FOXO3-FOXM1 axis: a key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol. 2018;50:77–89. doi:10.1016/j.semcancer.2017.11.018
  • Calhoun S, Duan L, Maki CG. Acetyl-CoA synthetases ACSS1 and ACSS2 are 4-hydroxytamoxifen responsive factors that promote survival in tamoxifen treated and estrogen deprived cells. Transl Oncol. 2022;19:101386. doi:10.1016/j.tranon.2022.101386
  • Yu JM, Sun W, Wang Z-H, et al. TRIB3 supports breast cancer stemness by suppressing FOXO1 degradation and enhancing SOX2 transcription. Nat Commun. 2019;10(1):5720. doi:10.1038/s41467-019-13700-6
  • Yan Y, He M, Zhao L, et al. A novel HIF-2alpha targeted inhibitor suppresses hypoxia-induced breast cancer stemness via SOD2-mtROS-PDI/GPR78-UPR(ER) axis. Cell Death Differ. 2022;29(9):1769–1789. doi:10.1038/s41418-022-00963-8
  • Zhang H, Zhang N, Liu Y, et al. Epigenetic Regulation of NAMPT by NAMPT-AS Drives Metastatic Progression in Triple-Negative Breast Cancer. Cancer Res. 2019;79(13):3347–3359. doi:10.1158/0008-5472.CAN-18-3418
  • Craze ML, El-Ansari R, Aleskandarany MA, et al. Glutamate dehydrogenase (GLUD1) expression in breast cancer. Breast Cancer Res Treat. 2019;174(1):79–91. doi:10.1007/s10549-018-5060-z
  • LeBleu VS, O’Connell JT, Gonzalez Herrera KN, et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16(10):992–1003, 1–15. doi:10.1038/ncb3039
  • Zou X, Zhu Y, Park S-H, et al. SIRT3-Mediated Dimerization of IDH2 Directs Cancer Cell Metabolism and Tumor Growth. Cancer Res. 2017;77(15):3990–3999. doi:10.1158/0008-5472.CAN-16-2393
  • Jiang K, Yao G, Hu L, et al. MOB2 suppresses GBM cell migration and invasion via regulation of FAK/Akt and cAMP/PKA signaling. Cell Death Dis. 2020;11(4):230. doi:10.1038/s41419-020-2381-8
  • Shen H, McHale CM, Haider SI, et al. Identification of Genes That Modulate Susceptibility to Formaldehyde and Imatinib by Functional Genomic Screening in Human Haploid KBM7 Cells. Toxicol Sci. 2016;151(1):10–22. doi:10.1093/toxsci/kfw032
  • Liao JM, Zeng SX, Zhou X, et al. Global effect of inauhzin on human p53-responsive transcriptome. PLoS One. 2012;7(12):e52172. doi:10.1371/journal.pone.0052172