161
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Machine Learning in Diagnosis and Prognosis of Lung Cancer by PET-CT

, , , , , & show all
Pages 361-375 | Received 29 Nov 2023, Accepted 16 Apr 2024, Published online: 24 Apr 2024

References

  • Coche E, Lonneux M, Geets X. Lung cancer: morphological and functional approach to screening, staging and treatment planning. Future Oncol. 2010;6(3):367–380. doi:10.2217/fon.10.7
  • Duma N, Santana-Davila R, Molina JR. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc. 2019;94(8):1623–1640. doi:10.1016/j.mayocp.2019.01.013
  • Jones GS, Baldwin DR. Recent advances in the management of lung cancer. Clin Med. 2018;18(Suppl 2):s41–s46. doi:10.7861/clinmedicine.18-2-s41
  • de Koning HJ, van der Aalst CM, de Jong PA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. New Engl J Med. 2020;382(6):503–513. doi:10.1056/NEJMoa1911793
  • Goldstraw P, Chansky K, Crowley J, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (Eighth) Edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11(1):39–51. doi:10.1016/j.jtho.2015.09.009
  • Arbour KC, Riely GJ. Systemic therapy for locally advanced and metastatic non-small cell lung cancer: a review. JAMA. 2019;322(8):764–774. doi:10.1001/jama.2019.11058
  • Kapoor V, McCook BM, Torok FS. An introduction to PET-CT imaging. Radiographics. 2004;24(2):523–543. doi:10.1148/rg.242025724
  • Hoffmann B, Frenzel T, Schmitz R, Schumacher U, Wedemann G. Modeling Growth of tumors and their spreading behavior using mathematical functions. Methods Mol Biol. 2019;1878:263–277.
  • Wisnivesky JP, Henschke C, McGinn T, Iannuzzi MC. Prognosis of Stage II non-small cell lung cancer according to tumor and nodal status at diagnosis. Lung Cancer. 2005;49(2):181–186. doi:10.1016/j.lungcan.2005.02.010
  • Szyszko TA, Yip C, Szlosarek P, Goh V, Cook GJ. The role of new PET tracers for lung cancer. Lung Cancer. 2016;94:7–14. doi:10.1016/j.lungcan.2016.01.010
  • Iravani A, Turgeon GA, Akhurst T, et al. PET-detected pneumonitis following curative-intent chemoradiation in non-small cell lung cancer (NSCLC): recognizing patterns and assessing the impact on the predictive ability of FDG-PET/CT response assessment. Eur J Nucl Med Mol Imaging. 2019;46(9):1869–1877. doi:10.1007/s00259-019-04388-3
  • Amisha Malik P, Pathania M, Rathaur VK. Overview of artificial intelligence in medicine. J Fam Med Prim Care. 2019;8(7):2328–2331. doi:10.4103/jfmpc.jfmpc_440_19
  • Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minimally Invasive Ther Allied Technol. 2019;28(2):73–81. doi:10.1080/13645706.2019.1575882
  • Milne-Ives M, de Cock C, Lim E, et al. The effectiveness of artificial intelligence conversational agents in health care: systematic review. J Med Int Res. 2020;22(10):e20346. doi:10.2196/20346
  • Han Z, Wei B, Xi X, Chen B, Yin Y, Li S. Unifying neural learning and symbolic reasoning for spinal medical report generation. Med Image Anal. 2021;67:101872. doi:10.1016/j.media.2020.101872
  • Schwalbe N, Wahl B. Artificial intelligence and the future of global health. Lancet. 2020;395(10236):1579–1586. doi:10.1016/S0140-6736(20)30226-9
  • van Zijl A, van Loon M, ten Cate O. Case-Based clinical reasoning in practice. In: ten Cate O, Custers E, Durning SJ, editors. Principles and Practice of Case-Based Clinical Reasoning Education: A Method for Preclinical Students. Cham (CH): Springer Copyright 2018, The Author(s); 2018:75–83.
  • Vlamou E, Papadopoulos B. Neuro-fuzzy networks and their applications in medical fields. Adv Exp Med Biol. 2020;1194:437.
  • Ao C, Jin S, Ding H, Zou Q, Yu L. Application and development of artificial intelligence and intelligent disease diagnosis. Curr Pharm Des. 2020;26(26):3069–3075. doi:10.2174/1381612826666200331091156
  • Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2022;23(1):40–55. doi:10.1038/s41580-021-00407-0
  • Martín Noguerol T, Paulano-Godino F, Martín-Valdivia MT, Menias CO, Luna A. Strengths, weaknesses, opportunities, and threats analysis of artificial intelligence and machine learning applications in radiology. J Am College Radiol. 2019;16(9 Pt B):1239–1247. doi:10.1016/j.jacr.2019.05.047
  • Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. J Internal Med. 2018;284(6):603–619. doi:10.1111/joim.12822
  • Aslin RN. Statistical learning: a powerful mechanism that operates by mere exposure. Wiley interdisciplinary reviews. Cognit Sci. 2017;8(1–2). doi:10.1002/wcs.1373
  • Jiang T, Gradus JL, Rosellini AJ. Supervised Machine learning: a brief primer. Behav Ther. 2020;51(5):675–687. doi:10.1016/j.beth.2020.05.002
  • Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to machine learning, neural networks, and deep learning. Trans Vision Sci Technol. 2020;9(2):14.
  • Rodríguez-Pérez R, Bajorath J. Evolution of support vector machine and regression modeling in chemoinformatics and drug discovery. J Comput Aided Molec Design. 2022;36(5):355–362. doi:10.1007/s10822-022-00442-9
  • Hu J, Szymczak S. A review on longitudinal data analysis with random forest. Briefings Bioinf. 2023;24(2). doi:10.1093/bib/bbad002
  • Karalis G. Decision Trees and Applications. Adv Exp Med Biol. 2020;1194:239–242.
  • Schober P, Vetter TR. Logistic regression in medical research. Anesthesia Analg. 2021;132(2):365–366. doi:10.1213/ANE.0000000000005247
  • Zhang Z. Introduction to machine learning: k-nearest neighbors. Ann Translat Med. 2016;4(11):218. doi:10.21037/atm.2016.03.37
  • Heng SY, Ridwan WM, Kumar P, et al. Artificial neural network model with different backpropagation algorithms and meteorological data for solar radiation prediction. Sci Rep. 2022;12(1):10457. doi:10.1038/s41598-022-13532-3
  • Zheng Z, Yang Y. Adaptive boosting for domain adaptation: toward robust predictions in scene segmentation. IEEE Trans Image Process. 2022;31:5371–5382. doi:10.1109/TIP.2022.3195642
  • Jiang Y, Yang M, Wang S, Li X, Sun Y. Emerging role of deep learning-based artificial intelligence in tumor pathology. Cancer Commun. 2020;40(4):154–166. doi:10.1002/cac2.12012
  • Araújo T, Aresta G, Castro E, et al. Classification of breast cancer histology images using convolutional neural networks. PLoS One. 2017;12(6):e0177544. doi:10.1371/journal.pone.0177544
  • Derry A, Krzywinski M, Altman N. Convolutional neural networks. Nature Methods. 2023;20(9):1269–1270. doi:10.1038/s41592-023-01973-1
  • Wang L, Ding L, Liu Z, et al. Automated identification of malignancy in whole-slide pathological images: identification of eyelid malignant melanoma in gigapixel pathological slides using deep learning. Br J Ophthalmol. 2020;104(3):318–323. doi:10.1136/bjophthalmol-2018-313706
  • Ehteshami Bejnordi B, Mullooly M, Pfeiffer RM, et al. Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies. Mod Pathol. 2018;31(10):1502–1512. doi:10.1038/s41379-018-0073-z
  • Ciompi F, Chung K, van Riel SJ, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep. 2017;7(1):46479. doi:10.1038/srep46479
  • Liu Z, Wang S, Dong D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics. 2019;9(5):1303–1322. doi:10.7150/thno.30309
  • Avanzo M, Wei L, Stancanello J, et al. Machine and deep learning methods for radiomics. Med Phys. 2020;47(5):e185–e202. doi:10.1002/mp.13678
  • Deist TM, Dankers F, Valdes G, et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an empirical comparison of classifiers. Med Phys. 2018;45(7):3449–3459. doi:10.1002/mp.12967
  • Shi L, He Y, Yuan Z, et al. Radiomics for response and outcome assessment for non-small cell lung cancer. Technol Cancer Res Treat. 2018;17:1533033818782788. doi:10.1177/1533033818782788
  • Nensa F, Demircioglu A, Rischpler C. Artificial intelligence in nuclear medicine. J Nucl Med. 2019;60(Suppl 2):29s–37s. doi:10.2967/jnumed.118.220590
  • Seifert R, Weber M, Kocakavuk E, Rischpler C, Kersting D. Artificial intelligence and machine learning in nuclear medicine: future perspectives. Semi Nucl Med. 2021;51(2):170–177. doi:10.1053/j.semnuclmed.2020.08.003
  • Lee LIT, Kanthasamy S, Ayyalaraju RS, Ganatra R. The current state of artificial intelligence in medical imaging and nuclear medicine. BJR Open. 2019;1(1):20190037. doi:10.1259/bjro.20190037
  • Ninatti G, Kirienko M, Neri E, Sollini M, Chiti A. Imaging-based prediction of molecular therapy targets in NSCLC by radiogenomics and AI approaches: a systematic review. Diagnostics. 2020;10(6):359. doi:10.3390/diagnostics10060359
  • Lv Z, Fan J, Xu J, et al. Value of (18)F-FDG PET/CT for predicting EGFR mutations and positive ALK expression in patients with non-small cell lung cancer: a retrospective analysis of 849 Chinese patients. Eur J Nucl Med Mol Imaging. 2018;45(5):735–750. doi:10.1007/s00259-017-3885-z
  • Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson JV, Waddell N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med. 2021;13(1):152. doi:10.1186/s13073-021-00968-x
  • Sadaghiani MS, Rowe SP, Sheikhbahaei S. Applications of artificial intelligence in oncologic (18)F-FDG PET/CT imaging: a systematic review. Ann Translat Med. 2021;9(9):823. doi:10.21037/atm-20-6162
  • Swanson K, Wu E, Zhang A, Alizadeh AA, Zou J. From patterns to patients: advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell. 2023;186(8):1772–1791. doi:10.1016/j.cell.2023.01.035
  • Wood DE, Kazerooni EA, Baum SL, et al. Lung Cancer screening, version 3.2018, NCCN clinical practice guidelines in oncology. J National Compr Cancer Network. 2018;16(4):412–441. doi:10.6004/jnccn.2018.0020
  • Fletcher JW, Kymes SM, Gould M, et al. A comparison of the diagnostic accuracy of 18F-FDG PET and CT in the characterization of solitary pulmonary nodules. J Nucl Med. 2008;49(2):179–185. doi:10.2967/jnumed.107.044990
  • Ruilong Z, Daohai X, Li G, Xiaohong W, Chunjie W, Lei T. Diagnostic value of 18F-FDG-PET/CT for the evaluation of solitary pulmonary nodules: a systematic review and meta-analysis. Nuclear med commun. 2017;38(1):67–75. doi:10.1097/MNM.0000000000000605
  • Li ZZ, Huang YL, Song HJ, Wang YJ, Huang Y. The value of 18F-FDG-PET/CT in the diagnosis of solitary pulmonary nodules: a meta-analysis. Medicine. 2018;97:12.
  • Sim Y, Chung MJ, Kotter E, et al. Deep convolutional neural network-based software improves radiologist detection of malignant lung nodules on chest radiographs. Radiology. 2020;294(1):199–209. doi:10.1148/radiol.2019182465
  • Kirienko M, Gallivanone F, Sollini M, et al. FDG PET/CT as theranostic imaging in diagnosis of non-small cell lung cancer. Front Biosci. 2017;22(10):1713–1723. doi:10.2741/4567
  • Soufi M, Kamali-Asl A, Geramifar P, Rahmim A. A novel framework for automated segmentation and labeling of homogeneous versus heterogeneous lung tumors in [(18)F]FDG-PET imaging. Mole Imag Biol. 2017;19(3):456–468. doi:10.1007/s11307-016-1015-0
  • Bug D, Feuerhake F, Oswald E, Schüler J, Merhof D. Semi-automated analysis of digital whole slides from humanized lung-cancer xenograft models for checkpoint inhibitor response prediction. Oncotarget. 2019;10(44):4587–4597. doi:10.18632/oncotarget.27069
  • Borrelli P, Ly J, Kaboteh R, et al. AI-based detection of lung lesions in [(18)F]FDG PET-CT from lung cancer patients. EJNMMI Phys. 2021;8(1):32. doi:10.1186/s40658-021-00376-5
  • Wang K, Qiao Z, Zhao X, et al. Individualized discrimination of tumor recurrence from radiation necrosis in glioma patients using an integrated radiomics-based model. Eur J Nucl Med Mol Imaging. 2020;47(6):1400–1411. doi:10.1007/s00259-019-04604-0
  • Zhang R, Zhu L, Cai Z, et al. Potential feature exploration and model development based on 18F-FDG PET/CT images for differentiating benign and malignant lung lesions. Eur J Radiol. 2019;121:108735. doi:10.1016/j.ejrad.2019.108735
  • Zhao J, Ji G, Qiang Y, Han X, Pei B, Shi Z. A new method of detecting pulmonary nodules with PET/CT based on an improved watershed algorithm. PLoS One. 2015;10:4.
  • Chen S, Harmon S, Perk T, et al. Diagnostic classification of solitary pulmonary nodules using dual time (18)F-FDG PET/CT image texture features in granuloma-endemic regions. Sci Rep. 2017;7(1):9370. doi:10.1038/s41598-017-08764-7
  • Visvikis D, Hatt M, Tixier F, Cheze Le Rest C. The age of reason for FDG PET image-derived indices. Eur J Nucl Med Mol Imaging. 2012;39(11):1670–1672. doi:10.1007/s00259-012-2239-0
  • Alkhawaldeh K, Bural G, Kumar R, Alavi A. Impact of dual-time-point (18)F-FDG PET imaging and partial volume correction in the assessment of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging. 2008;35(2):246–252. doi:10.1007/s00259-007-0584-1
  • Zhang J, Ma G, Cheng J, Song S, Zhang Y, Shi LQ. Diagnostic classification of solitary pulmonary nodules using support vector machine model based on 2-[18F]fluoro-2-deoxy-D-glucose PET/computed tomography texture features. Nuclear Med Commun. 2020;41(6):560–566. doi:10.1097/MNM.0000000000001193
  • Park YJ, Choi D, Choi JY, Hyun SH. Performance evaluation of a deep learning system for differential diagnosis of lung cancer with conventional CT and FDG PET/CT using transfer learning and metadata. Clin Nucl Med. 2021;46(8):635–640. doi:10.1097/RLU.0000000000003661
  • Teramoto A, Fujita H, Yamamuro O, Tamaki T. Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med Phys. 2016;43(6):2821–2827. doi:10.1118/1.4948498
  • Scott JA, McDermott S, Kilcoyne A, Wang Y, Halpern EF, Ackman JB. Comparison of (18)F-FDG avidity at PET of benign and malignant pure ground-glass opacities: a paradox? Part II: artificial neural network integration of the PET/CT characteristics of ground-glass opacities to predict their likelihood of malignancy. Clin Radiol. 2019;74(9):692–696. doi:10.1016/j.crad.2019.04.024
  • Schwyzer M, Ferraro DA, Muehlematter UJ, et al. Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks - Initial results. Lung Cancer. 2018;126:170–173. doi:10.1016/j.lungcan.2018.11.001
  • Leung KH, Marashdeh W, Wray R, et al. A physics-guided modular deep-learning based automated framework for tumor segmentation in PET. Phys Med Biol. 2020;65(24):245032. doi:10.1088/1361-6560/ab8535
  • Ikushima K, Arimura H, Jin Z, et al. Computer-assisted framework for machine-learning-based delineation of GTV regions on datasets of planning CT and PET/CT images. J Radiat Res. 2017;58(1):123–134. doi:10.1093/jrr/rrw082
  • Protonotarios NE, Katsamenis I, Sykiotis S, et al. A few-shot U-Net deep learning model for lung cancer lesion segmentation via PET/CT imaging. Biomed Phys Eng Express. 2022;8(2):025019. doi:10.1088/2057-1976/ac53bd
  • Gubbi J, Kanakatte A, Tomas K, et al. Automatic tumour volume delineation in respiratory-gated PET images. J Med Imag Radiat Oncol. 2011;55(1):65–76. doi:10.1111/j.1754-9485.2010.02231.x
  • Zhong Z, Kim Y, Plichta K, et al. Simultaneous cosegmentation of tumors in PET-CT images using deep fully convolutional networks. Med Phys. 2019;46(2):619–633. doi:10.1002/mp.13331
  • Kawata Y, Arimura H, Ikushima K, et al. Impact of pixel-based machine-learning techniques on automated frameworks for delineation of gross tumor volume regions for stereotactic body radiation therapy. Phys Med. 2017;42:141–149. doi:10.1016/j.ejmp.2017.08.012
  • Scagliotti G, Hanna N, Fossella F, et al. The differential efficacy of pemetrexed according to NSCLC histology: a review of two Phase III studies. Oncologist. 2009;14(3):253–263. doi:10.1634/theoncologist.2008-0232
  • Khosravi P, Kazemi E, Imielinski M, Elemento O, Hajirasouliha I. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images. EBioMedicine. 2018;27:317–328. doi:10.1016/j.ebiom.2017.12.026
  • Feng P, Shao Z, Dong B, et al. Application of diffusion kurtosis imaging and (18)F-FDG PET in evaluating the subtype, stage and proliferation status of non-small cell lung cancer. Front Oncol. 2022;12:989131. doi:10.3389/fonc.2022.989131
  • Ha S, Choi H, Cheon GJ, et al. Autoclustering of non-small cell lung carcinoma subtypes on (18)F-FDG PET using texture analysis: a preliminary result. Nucl Med molec Imag. 2014;48(4):278–286. doi:10.1007/s13139-014-0283-3
  • Koyasu S, Nishio M, Isoda H, Nakamoto Y, Togashi K. Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on (18)F FDG-PET/CT. Ann Nucl Med. 2020;34(1):49–57. doi:10.1007/s12149-019-01414-0
  • Ren C, Zhang J, Qi M, et al. Correction to: machine learning based on clinico-biological features integrated 18F-FDG PET/CT radiomics for distinguishing squamous cell carcinoma from adenocarcinoma of lung. Eur J Nucl Med Mol Imaging. 2021;48(5):1696. doi:10.1007/s00259-021-05226-1
  • Han Y, Ma Y, Wu Z, et al. Histologic subtype classification of non-small cell lung cancer using PET/CT images. Eur J Nucl Med Mol Imaging. 2021;48(2):350–360. doi:10.1007/s00259-020-04771-5
  • Dondi F, Gatta R, Albano D, et al. Role of radiomics features and machine learning for the histological classification of stage I and stage II NSCLC at [(18)F]FDG PET/CT: a comparison between two PET/CT scanners. J Clin Med. 2022;12(1). doi:10.3390/jcm12010255
  • Shen H, Chen L, Liu K, et al. A subregion-based positron emission tomography/computed tomography (PET/CT) radiomics model for the classification of non-small cell lung cancer histopathological subtypes. Quantit Imag Med Surg. 2021;11(7):2918–2932. doi:10.21037/qims-20-1182
  • Yang G, Xiao Z, Tang C, Deng Y, Huang H, He Z. Recent advances in biosensor for detection of lung cancer biomarkers. Biosens Bioelectron. 2019;141:111416. doi:10.1016/j.bios.2019.111416
  • Zhao H, Su Y, Wang M, et al. The machine learning model for distinguishing pathological subtypes of non-small cell lung cancer. Front Oncol. 2022;12:875761. doi:10.3389/fonc.2022.875761
  • Koh YW, Lee SJ, Park SY. Differential expression and prognostic significance of GLUT1 according to histologic type of non-small-cell lung cancer and its association with volume-dependent parameters. Lung Cancer. 2017;104:31–37. doi:10.1016/j.lungcan.2016.12.003
  • Hyun SH, Ahn MS, Koh YW, Lee SJ. A machine-learning approach using PET-based radiomics to predict the histological subtypes of lung cancer. Clin Nucl Med. 2019;44(12):956–960. doi:10.1097/RLU.0000000000002810
  • Zhao M, Kluge K, Papp L, et al. Multi-lesion radiomics of PET/CT for non-invasive survival stratification and histologic tumor risk profiling in patients with lung adenocarcinoma. Eur Radiol. 2022;32(10):7056–7067. doi:10.1007/s00330-022-08999-7
  • Kris MG, Johnson BE, Berry LD, et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA. 2014;311(19):1998–2006. doi:10.1001/jama.2014.3741
  • Midha A, Dearden S, McCormack R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am J Canc Res. 2015;5(9):2892–2911.
  • Park K, Tan EH, O’Byrne K, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016;17(5):577–589. doi:10.1016/S1470-2045(16)30033-X
  • Nair JKR, Saeed UA, McDougall CC, et al. Radiogenomic models using machine learning techniques to predict EGFR mutations in non-small cell lung cancer. Can Assoc Radiol J. 2021;72(1):109–119. doi:10.1177/0846537119899526
  • Sha L, Osinski BL, Ho IY, et al. Multi-field-of-view deep learning model predicts nonsmall cell lung cancer programmed death-ligand 1 status from whole-slide hematoxylin and eosin images. J Pathol Inform. 2019;10(1):24. doi:10.4103/jpi.jpi_24_19
  • Truini A, Starrett JH, Stewart T, et al. The EGFR exon 19 mutant L747-A750>P exhibits distinct sensitivity to tyrosine kinase inhibitors in lung adenocarcinoma. Clin Cancer Res. 2019;25(21):6382–6391. doi:10.1158/1078-0432.CCR-19-0780
  • An N, Zhang Y, Niu H, et al. EGFR-TKIs versus taxanes agents in therapy for nonsmall-cell lung cancer patients: a PRISMA-compliant systematic review with meta-analysis and meta-regression. Medicine. 2016;95(50):e5601. doi:10.1097/MD.0000000000005601
  • Giatromanolaki A, Koukourakis IM, Balaska K, Mitrakas AG, Harris AL, Koukourakis MI. Programmed death-1 receptor (PD-1) and PD-ligand-1 (PD-L1) expression in non-small cell lung cancer and the immune-suppressive effect of anaerobic glycolysis. Med Oncol. 2019;36(9):76. doi:10.1007/s12032-019-1299-4
  • Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nature Med. 2018;24(10):1559–1567. doi:10.1038/s41591-018-0177-5
  • Sun X, Xiao Z, Chen G, et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Sci Trans Med. 2018;10(431). doi:10.1126/scitranslmed.aan8840
  • Mu W, Jiang L, Zhang J, et al. Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nat Commun. 2020;11(1):5228. doi:10.1038/s41467-020-19116-x
  • Chen S, Han X, Tian G, et al. Using stacked deep learning models based on PET/CT images and clinical data to predict EGFR mutations in lung cancer. Front Med. 2022;9:1041034. doi:10.3389/fmed.2022.1041034
  • Yang B, Ji H, Zhong J, et al. Value of (18)F-FDG PET/CT-based radiomics nomogram to predict survival outcomes and guide personalized targeted therapy in lung adenocarcinoma with EGFR mutations. Front Oncol. 2020;10:567160. doi:10.3389/fonc.2020.567160
  • Liu Q, Sun D, Li N, et al. Predicting EGFR mutation subtypes in lung adenocarcinoma using (18)F-FDG PET/CT radiomic features. Transl Lung Canc Res. 2020;9(3):549–562. doi:10.21037/tlcr.2020.04.17
  • Yip SS, Kim J, Coroller TP, et al. Associations between somatic mutations and metabolic imaging phenotypes in non-small cell lung cancer. J Nucl Med. 2017;58(4):569–576. doi:10.2967/jnumed.116.181826
  • Krarup MMK, Nygård L, Vogelius IR, et al. Heterogeneity in tumours: validating the use of radiomic features on (18)F-FDG PET/CT scans of lung cancer patients as a prognostic tool. Radiother Oncol. 2020;144:72–78. doi:10.1016/j.radonc.2019.10.012
  • Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–128. doi:10.1126/science.aaa1348
  • Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. New Engl J Med. 2016;375(19):1823–1833. doi:10.1056/NEJMoa1606774
  • Jiang M, Sun D, Guo Y, et al. Assessing PD-L1 expression level by radiomic features from PET/CT in nonsmall cell lung cancer patients: an initial result. Acad Radiol. 2020;27(2):171–179. doi:10.1016/j.acra.2019.04.016
  • Mu W, Jiang L, Shi Y, et al. Non-invasive measurement of PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images. J Immunother Canc. 2021;9(6):e002118. doi:10.1136/jitc-2020-002118
  • Park HJ, Park N, Lee JH, et al. Automated extraction of information of lung cancer staging from unstructured reports of PET-CT interpretation: natural language processing with deep-learning. BMC Med Inf Decis Making. 2022;22(1):229. doi:10.1186/s12911-022-01975-7
  • Bach PB, Gould MK. When the average applies to no one: personalized decision making about potential benefits of lung cancer screening. Ann Internal Med. 2012;157(8):571–573. doi:10.7326/0003-4819-157-8-201210160-00524
  • Choi HS, Jeong BK, Jeong H, et al. Application of the new 8th TNM staging system for non-small cell lung cancer: treated with curative concurrent chemoradiotherapy. Radiat Oncol. 2017;12(1):122. doi:10.1186/s13014-017-0848-2
  • Zhong Z, Kim Y, Buatti J, Wu X. 3D alpha matting based co-segmentation of tumors on PET-CT images. Molecu Imag Reconstr Analy Mov Body Organs Stroke Imag Treat. 2017;10555:31–42.
  • Yoo J, Cheon M, Park YJ, et al. Machine learning-based diagnostic method of pre-therapeutic (18)F-FDG PET/CT for evaluating mediastinal lymph nodes in non-small cell lung cancer. Eur Radiol. 2021;31(6):4184–4194. doi:10.1007/s00330-020-07523-z
  • Mercan C, Aksoy S, Mercan E, Shapiro LG, Weaver DL, Elmore JG. Multi-instance multi-label learning for multi-class classification of whole slide breast histopathology images. IEEE Transact Med Imag. 2018;37(1):316–325. doi:10.1109/TMI.2017.2758580
  • Zeune LL, de Wit S, Berghuis AMS, Terstappen L, Brune C. How to agree on a CTC: evaluating the consensus in circulating tumor cell scoring. Cytometry. 2018;93(12):1202–1206. doi:10.1002/cyto.a.23576
  • Gould MK, Huang BZ, Tammemagi MC, Kinar Y, Shiff R. Machine learning for early lung cancer identification using routine clinical and laboratory data. Am J Respir Crit Care Med. 2021;204(4):445–453. doi:10.1164/rccm.202007-2791OC
  • Kirienko M, Cozzi L, Rossi A, et al. Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions. Eur J Nucl Med Mol Imaging. 2018;45(10):1649–1660. doi:10.1007/s00259-018-3987-2
  • Rogasch JMM, Michaels L, Baumgärtner GL, et al. A machine learning tool to improve prediction of mediastinal lymph node metastases in non-small cell lung cancer using routinely obtainable [18F]FDG-PET/CT parameters. Eur J Nucl Med Mol Imaging. 2023;50(7):2140–2151. doi:10.1007/s00259-023-06145-z
  • Kirienko M, Sollini M, Silvestri G, et al. Convolutional neural networks promising in lung cancer T-parameter assessment on baseline FDG-PET/CT. Contrast Media Mole Imag. 2018;2018:1382309. doi:10.1155/2018/1382309
  • Tau N, Stundzia A, Yasufuku K, Hussey D, Metser U. Convolutional neural networks in predicting nodal and distant metastatic potential of newly diagnosed non-small cell lung cancer on FDG PET images. Am J Roentgenol. 2020;215(1):192–197. doi:10.2214/AJR.19.22346
  • Desseroit MC, Visvikis D, Tixier F, et al. Erratum to: development of a nomogram combining clinical staging with 18F-FDG PET/CT image features in non-small-cell lung cancer stage I-III. Eur J Nucl Med Mol Imaging. 2016;43(10):1933. doi:10.1007/s00259-016-3450-1
  • Sepehri S, Tankyevych O, Upadhaya T, Visvikis D, Hatt M, Cheze Le Rest C. Comparison and fusion of machine learning algorithms for prospective validation of PET/CT radiomic features prognostic value in stage II-III non-small cell lung cancer. Diagnostics. 2021;11(4):675. doi:10.3390/diagnostics11040675
  • Yoo J, Lee J, Cheon M, et al. Predictive Value of (18)F-FDG PET/CT using machine learning for pathological response to neoadjuvant concurrent chemoradiotherapy in patients with stage III non-small cell lung cancer. Cancers. 2022;14(8):1987. doi:10.3390/cancers14081987
  • Koike T, Koike T, Yoshiya K, Tsuchida M, Toyabe S. Risk factor analysis of locoregional recurrence after sublobar resection in patients with clinical stage IA non-small cell lung cancer. J Thoracic Cardiovasc Surg. 2013;146(2):372–378. doi:10.1016/j.jtcvs.2013.02.057
  • Suzuki K, Asamura H, Kusumoto M, Kondo H, Tsuchiya R. ”Early” peripheral lung cancer: prognostic significance of ground glass opacity on thin-section computed tomographic scan. Ann Thorac Surg. 2002;74(5):1635–1639. doi:10.1016/S0003-4975(02)03895-X
  • Aokage K, Miyoshi T, Ishii G, et al. Clinical and pathological staging validation in the eighth edition of the TNM classification for lung cancer: correlation between solid size on thin-section computed tomography and invasive size in pathological findings in the new T classification. J Thorac Oncol. 2017;12(9):1403–1412. doi:10.1016/j.jtho.2017.06.003
  • Du Z, Zhong X, Wang F, Uversky VN. Inference of gene regulatory networks based on the light gradient boosting machine. Comput Biol Chem. 2022;101:107769. doi:10.1016/j.compbiolchem.2022.107769
  • Zheng X, He B, Hu Y, et al. Diagnostic accuracy of deep learning and radiomics in lung cancer staging: a systematic review and meta-analysis. Front Public Health. 2022;10:938113. doi:10.3389/fpubh.2022.938113
  • Onozato Y, Iwata T, Uematsu Y, et al. Predicting pathological highly invasive lung cancer from preoperative [(18)F]FDG PET/CT with multiple machine learning models. Eur J Nucl Med Mol Imaging. 2023;50(3):715–726. doi:10.1007/s00259-022-06038-7
  • Li X, Wang D, Yu L. Prognostic and Predictive values of metabolic parameters of (18)F-FDG PET/CT in patients with non-small cell lung cancer treated with chemotherapy. Molec Imag. 2019;18:1536012119846025. doi:10.1177/1536012119846025
  • Zhao X, Li L, Lu W, Tan S. Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network. Phys Med Biol. 2018;64(1):015011. doi:10.1088/1361-6560/aaf44b
  • Lustberg T, van Soest J, Gooding M, et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol. 2018;126(2):312–317. doi:10.1016/j.radonc.2017.11.012
  • Zhou X. Automatic Segmentation of multiple organs on 3D CT images by using deep learning approaches. Adv Exp Med Biol. 2020;1213:135–147.
  • Zhong Z, Kim Y, Zhou L, et al. 3D Fully convolutional networks for co-segmentation of tumors on pet-Ct images. IEEE Int Sympos Biomed Imag. 2018;2018:228–231.
  • Mattonen SA, Palma DA, Haasbeek CJ, Senan S, Ward AD. Early prediction of tumor recurrence based on CT texture changes after stereotactic ablative radiotherapy (SABR) for lung cancer. Med Phys. 2014;41(3):033502. doi:10.1118/1.4866219
  • Li S, Yang N, Li B, et al. A pilot study using kernelled support tensor machine for distant failure prediction in lung SBRT. Med Image Anal. 2018;50:106–116. doi:10.1016/j.media.2018.09.004
  • Oikonomou A, Khalvati F, Tyrrell PN, et al. Radiomics analysis at PET/CT contributes to prognosis of recurrence and survival in lung cancer treated with stereotactic body radiotherapy. Sci Rep. 2018;8(1):4003. doi:10.1038/s41598-018-22357-y
  • Mezquita L, Auclin E, Ferrara R, et al. Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol. 2018;4(3):351–357. doi:10.1001/jamaoncol.2017.4771
  • Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–330. doi:10.1038/nature21349
  • Gajewski TF, Corrales L, Williams J, Horton B, Sivan A, Spranger S. Cancer immunotherapy targets based on understanding the T cell-inflamed versus non-T cell-inflamed tumor microenvironment. Adv Exp Med Biol. 2017;1036:19–31.
  • Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Med. 2018;24(5):541–550. doi:10.1038/s41591-018-0014-x
  • Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197–218. doi:10.1038/s41573-018-0007-y
  • Tong H, Sun J, Fang J, et al. A machine learning model based on PET/CT Radiomics and clinical characteristics predicts tumor immune profiles in non-small cell lung cancer: a retrospective multicohort study. Front Immunol. 2022;13:859323. doi:10.3389/fimmu.2022.859323
  • Uramoto H, Tanaka F. Prediction of recurrence after complete resection in patients with NSCLC. Anticancer Res. 2012;32(9):3953–3960.
  • Huh JW, Kim CH, Lim SW, Kim HR, Kim YJ. Early recurrence in patients undergoing curative surgery for colorectal cancer: is it a predictor for poor overall survival? Int J Colorec Dis. 2013;28(8):1143–1149. doi:10.1007/s00384-013-1675-z
  • Lou F, Sima CS, Rusch VW, Jones DR, Huang J. Differences in patterns of recurrence in early-stage versus locally advanced non-small cell lung cancer. Ann Thorac Surg. 2014;98(5):1755–1760; discussion 1760–1751. doi:10.1016/j.athoracsur.2014.05.070
  • Kay FU, Kandathil A, Batra K, Saboo SS, Abbara S, Rajiah P. Revisions to the tumor, node, metastasis staging of lung cancer (8(th) edition): rationale, radiologic findings and clinical implications. World J Radiol. 2017;9(6):269–279. doi:10.4329/wjr.v9.i6.269
  • De Wever W, Ceyssens S, Mortelmans L, et al. Additional value of PET-CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT. Eur Radiol. 2007;17(1):23–32. doi:10.1007/s00330-006-0284-4
  • Vu CC, Matthews R, Kim B, Franceschi D, Bilfinger TV, Moore WH. Prognostic value of metabolic tumor volume and total lesion glycolysis from ¹8F-FDG PET/CT in patients undergoing stereotactic body radiation therapy for stage I non-small-cell lung cancer. Nuclear med commun. 2013;34(10):959–963. doi:10.1097/MNM.0b013e32836491a9
  • Liu J, Dong M, Sun X, Li W, Xing L, Yu J. Prognostic value of 18F-FDG PET/CT in surgical non-small cell lung cancer: a meta-analysis. PLoS One. 2016;11:1.
  • Hosny A, Parmar C, Coroller TP, et al. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med. 2018;15(11):e1002711. doi:10.1371/journal.pmed.1002711
  • Baek S, He Y, Allen BG, et al. Deep segmentation networks predict survival of non-small cell lung cancer. Sci Rep. 2019;9(1):17286. doi:10.1038/s41598-019-53461-2
  • Astaraki M, Wang C, Buizza G, Toma-Dasu I, Lazzeroni M, Smedby Ö. Early survival prediction in non-small cell lung cancer from PET/CT images using an intra-tumor partitioning method. Phys Med. 2019;60:58–65. doi:10.1016/j.ejmp.2019.03.024
  • Ohri N, Duan F, Snyder BS, et al. Pretreatment 18F-FDG PET textural features in locally advanced non-small cell lung cancer: secondary analysis of ACRIN 6668/RTOG 0235. J Nucl Med. 2016;57(6):842–848. doi:10.2967/jnumed.115.166934
  • Grossmann P, Stringfield O, El-Hachem N, et al. Defining the biological basis of radiomic phenotypes in lung cancer. eLife. 2017;3:6.
  • Huang B, Sollee J, Luo YH, et al. Prediction of lung malignancy progression and survival with machine learning based on pre-treatment FDG-PET/CT. EBioMedicine. 2022;82:104127. doi:10.1016/j.ebiom.2022.104127
  • He J, Zhang JX, Chen CT, et al. The relative importance of clinical and socio-demographic variables in prognostic prediction in non-small cell lung cancer: a variable importance approach. Med Care. 2020;58(5):461–467. doi:10.1097/MLR.0000000000001288
  • Park SB, Kim KU, Park YW, Hwang JH, Lim CH. Application of 18 F-fluorodeoxyglucose PET/CT radiomic features and machine learning to predict early recurrence of non-small cell lung cancer after curative-intent therapy. Nucl Med Commun. 2023;44(2):161–168. doi:10.1097/MNM.0000000000001646
  • Yi X, Chen Q, Yang J, et al. CT-Based sarcopenic nomogram for predicting progressive disease in advanced non-small-cell lung cancer. Front Oncol. 2021;11:643941. doi:10.3389/fonc.2021.643941
  • de Jong C, Chargi N, Herder GJM, et al. The association between skeletal muscle measures and chemotherapy-induced toxicity in non-small cell lung cancer patients. J Cachexia Sarcope Musc. 2022;13(3):1554–1564. doi:10.1002/jcsm.12967
  • Kazemi-Bajestani SM, Mazurak VC, Baracos V. Computed tomography-defined muscle and fat wasting are associated with cancer clinical outcomes. Semin Cell Dev Biol. 2016;54:2–10. doi:10.1016/j.semcdb.2015.09.001
  • Sjøblom B, Grønberg BH, Wentzel-Larsen T, et al. Skeletal muscle radiodensity is prognostic for survival in patients with advanced non-small cell lung cancer. Clin Nutr. 2016;35(6):1386–1393. doi:10.1016/j.clnu.2016.03.010
  • Oruc Z, Akbay A, Ali Kaplan M, et al. A low body fat mass ratio predicts poor prognosis in patients with advanced non-small cell lung cancer. Nutr Cancer. 2022;74(9):3284–3291. doi:10.1080/01635581.2022.2074064
  • Gezer NS, Bandos AI, Beeche CA, Leader JK, Dhupar R, Pu J. CT-derived body composition associated with lung cancer recurrence after surgery. Lung Cancer. 2023;179:107189. doi:10.1016/j.lungcan.2023.107189
  • Zhang Y, Tan W, Zheng Z, Wang J, Xing L, Sun X. Body composition and radiomics from 18F-FDG PET/CT together help predict prognosis for patients with stage IV non-small cell lung cancer. J Comput Assist Tomogra. 2023;47(6):906–912. doi:10.1097/RCT.0000000000001496