225
Views
15
CrossRef citations to date
0
Altmetric
Original Research

Plasma Metabolomics and Lipidomics Reveal Perturbed Metabolites in Different Disease Stages of Chronic Obstructive Pulmonary Disease

, ORCID Icon, , &
Pages 553-565 | Published online: 09 Mar 2020

References

  • BuistAS, McBurnieMA, VollmerWM, et al. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet. 2007;370:741–750. doi:10.1016/s0140-6736(07)61377-417765523
  • KesslerR, PartridgeMR, MiravitllesM, et al. Symptom variability in patients with severe COPD: a pan-European cross-sectional study. Eur Respir J. 2011;37:264–272. doi:10.1183/09031936.0005111021115606
  • JacksonH, HubbardR. Detecting chronic obstructive pulmonary disease using peak flow rate: cross sectional survey. BMJ. 2003;327:653–654. doi:10.1136/bmj.327.7416.65314500437
  • KovacsG, AgustiA, BarberàJA, et al. Pulmonary vascular involvement in chronic obstructive pulmonary disease is there a pulmonary vascular phenotype? Am J Respir Crit Care Med. 2018;198:1000–1011. doi:10.1164/rccm.201801-0095PP29746142
  • VogelmeierCF, CrinerGJ, MartínezFJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Arch Bronconeumol. 2017;53:128–149. doi:10.1016/j.arbres.2017.02.00128274597
  • DunnWB, BaileyNJ, JohnsonHE. Measuring the metabolome: current analytical technologies. Analyst. 2005;130:606–625. doi:10.1039/b418288j15852128
  • de LaurentiisG, ParisD, MelckD, et al. Separating smoking-related diseases using NMR-based metabolomics of exhaled breath condensate. J Proteome Res. 2013;12:1502–1511. doi:10.1021/pr301171p23360153
  • Rodriguez-PerezR, CortésR, GuamánA, et al. Instrumental drift removal in GC-MS data for breath analysis: the short-term and long-term temporal validation of putative biomarkers for COPD. J Breath Res. 2018;12:036007. doi:10.1088/1752-7163/aaa49229292699
  • FiehnO. Metabolomics–the link between genotypes and phenotypes. Plant Mol Biol. 2002;48:155–171. doi:10.1023/A:101371390583311860207
  • ZhouJ, YinY. Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry. Analyst. 2016;141:6362–6373. doi:10.1039/c6an01753c27722450
  • KimYM, HeymanHM. Mass spectrometry-based metabolomics. Methods Mol Biol. 2018;1775:107–118. doi:10.1007/978-1-4939-7804-5_1029876813
  • DunnWB, EllisDI. Metabolomics: current analytical platforms and methodologies. TrAC Trend Anal Chem. 2005;24:285–294. doi:10.1016/j.trac.2004.11.021
  • OrtmayrK, DubuisS, ZampieriM. Metabolic profiling of cancer cells reveals genome-wide crosstalk between transcriptional regulators and metabolism. Nat Commun. 2019;10:1841. doi:10.1038/s41467-019-09695-931015463
  • LuoP, YinP, HuaR, et al. A Large-scale, multicenter serum metabolite biomarker identification study for the early detection of hepatocellular carcinoma. Hepatology. 2018;67:662–675. doi:10.1002/hep.2956128960374
  • CalzadaE, AveryE, SamPN, et al. Phosphatidylethanolamine made in the inner mitochondrial membrane is essential for yeast cytochrome bc1 complex function. Nat Commun. 2019;10:1432. doi:10.1038/s41467-019-09425-130926815
  • ManiscalcoM, ParisD, MelckDJ, et al. Differential diagnosis between newly diagnosed asthma and COPD using exhaled breath condensate metabolomics: a pilot study. Eur Respir J. 2018;51:1701825. doi:10.1183/13993003.01825-201729348154
  • RanN, PangZ, GuY, et al. An updated overview of metabolomic profile changes in chronic obstructive pulmonary disease. Metabolites. 2019;9:111. doi:10.3390/metabo9060111
  • EngelenMP, De CastroCLN, RuttenEPA, et al. Enhanced anabolic response to milk protein sip feeding in elderly subjects with COPD is associated with a reduced splanchnic extraction of multiple amino acids. Clin Nutr. 2012;31:616–624. doi:10.1016/j.clnu.2012.04.00622682082
  • YonedaT, YoshikawaM, FuA, et al. Plasma levels of amino acids and hypermetabolism in patients with chronic obstructive pulmonary disease. Nutrition. 2001;17:95–99. doi:10.1016/s0899-9007(00)00509-811240335
  • VahidI, AbdolaliB, FatemehM, AlirezaN, MehdiS. The effects of branch-chain amino acids on fatigue in the athletes. Interv Med Appl Sci. 2018;10:233–235. doi:10.1556/1646.10.2018.1030792920
  • RahmanI. The role of oxidative stress in the pathogenesis of COPD. Treat Respir Med. 2005;4:175–200. doi:10.2165/00151829-200504030-0000315987234
  • JiY, WuZ, DaiZ, et al. Nutritional epigenetics with a focus on amino acids: implications for the development and treatment of metabolic syndrome. J Nutr Biochem. 2016;27:1–8. doi:10.1016/j.jnutbio.2015.08.00326427799
  • SugawaraK, TakahashiH, KasaiC, et al. Effects of nutritional supplementation combined with low-intensity exercise in malnourished patients with COPD. Respir Med. 2010;104:1883–1889. doi:10.1016/j.rmed.2010.05.00820627502
  • IshikawaS, MatsumuraK, KitamuraN, TakanamiY, ItoS. Multi-omics analysis: repeated exposure of a 3D bronchial tissue culture to whole-cigarette smoke. Toxicol in Vitro. 2019;54:251–262. doi:10.1016/j.tiv.2018.10.00130291989
  • RenX, ZhangJ, FuX, et al. LC-MS based metabolomics identification of novel biomarkers of tobacco smoke-induced chronic bronchitis. Biomed Chromatogr. 2016;30:68–74. doi:10.1002/bmc.362026390017
  • NavarreteA, RupérezFJ, MendesTO, et al. A metabolomic approach shows sphingosine 1-phosphate and lysophospholipids as mediators of the therapeutic effect of liver growth factor in emphysema. J Pharm Biomed Anal. 2017;139:238–246. doi:10.1016/j.jpba.2017.02.04528314215
  • XiaJ, SinelnikovIV, HanB, WishartDS. MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Res. 2015;43:W251–W257. doi:10.1093/nar/gkv38025897128
  • WangC, XuJ, YangL, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet. 2018;391:1706–1717. doi:10.1016/s0140-6736(18)30841-929650248
  • WrightCE, TallanHH, LinYY, GaullGE. Taurine: biological update. Annu Rev Biochem. 1986;55:427–453. doi:10.1146/annurev.bi.55.070186.0022353527049
  • HuxtableRJ. Physiological actions of taurine. Physiol Rev. 1992;72:101–163. doi:10.1152/physrev.1992.72.1.1011731369
  • UbhiBK, RileyJH, ShawPA, et al. Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur Respir J. 2012;40:345–355. doi:10.1183/09031936.0011241122183483
  • XuW, KANEKOFT, ZHENGS, et al. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J. 2004;18:1746–1748. doi:10.1096/fj.04-2317fje15364894
  • KilkK, AugA, OttasA, et al. Phenotyping of chronic obstructive pulmonary disease based on the integration of metabolomes and clinical characteristics. Int J Mol Sci. 2018;19:666. doi:10.3390/ijms19030666
  • De BenedettoF, PastorelliR, FerrarioM, et al. Supplementation with Qter((R)) and creatine improves functional performance in COPD patients on long term oxygen therapy. Respir Med. 2018;142:86–93. doi:10.1016/j.rmed.2018.08.00230170808
  • ScholsAMWJ, SoetersPB, DingemansAMC, et al. Prevalence and characteristics of nutritional depletion in patients with stable COPD eligible for pulmonary rehabilitation. Am Rev Respir Dis. 1993;147:1151–1156. doi:10.1164/ajrccm/147.5.11518484624
  • PeruzzaS, SergiG, VianelloA, et al. Chronic obstructive pulmonary disease (COPD) in elderly subjects: impact on functional status and quality of life. Respir Med. 2003;97:612–617. doi:10.1053/rmed.2003.148812814144
  • ChalmersJD, AlibertiS, FilonenkoA, et al. Characterization of the “frequent exacerbator phenotype” in bronchiectasis. Am J Respir Crit Care Med. 2018;197:1410–1420. doi:10.1164/rccm.201711-2202OC29357265