144
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Necroptosis Mediates Cigarette Smoke-Induced Inflammatory Responses in Macrophages

, , , , &
Pages 1093-1101 | Published online: 18 May 2020

References

  • PauwelsRA, RabeKF. Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet. 2004;364(9434):613–620. doi:10.1016/S0140-6736(04)16855-415313363
  • VestboJ, HurdSS, AgustiAG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–365. doi:10.1164/rccm.201204-0596PP22878278
  • DecramerM, JanssensW, MiravitllesM. Chronic obstructive pulmonary disease. Lancet. 2012;379(9823):1341–1351. doi:10.1016/S0140-6736(11)60968-922314182
  • WangY, XuJ, MengY, AdcockIM, YaoX. Role of inflammatory cells in airway remodeling in COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:3341–3348. doi:10.2147/COPD.S17612230349237
  • YamasakiK, EedenSFV. Lung macrophage phenotypes and functional responses: role in the pathogenesis of COPD. Int J Mol Sci. 2018;19(2):E582. doi:10.3390/ijms1902058229462886
  • LinkermannA, GreenDR. Necroptosis. N Engl J Med. 2014;370(5):455–465. doi:10.1056/NEJMra131005024476434
  • ZhangD-W, ShaoJ, LinJ, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009;325(5938):332–336. doi:10.1126/science.117230819498109
  • MizumuraK, CloonanS, NakahiraK, et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest. 2014;124(9):3987–4003. doi:10.1172/JCI7498525083992
  • WangY, ZhouJS, XuXC, et al. Endoplasmic reticulum chaperone GRP78 mediates cigarette smoke-induced necroptosis and injury in bronchial epithelium. Int J Chron Obstruct Pulmon Dis. 2018;13:571–581. doi:10.2147/COPD.S15063329445274
  • ChenZH, KimHP, SciurbaFC, et al. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS One. 2008;3(10):e3316. doi:10.1371/journal.pone.000331618830406
  • ChenZH, LamHC, JinY, et al. Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc Natl Acad Sci U S A. 2010;107(44):18880–18885. doi:10.1073/pnas.100557410720956295
  • LiZ, WuY, ChenHP, et al. MTOR suppresses environmental particle-induced inflammatory response in macrophages. J Immunol. 2018;200(8):2826–2834. doi:10.4049/jimmunol.170147129563176
  • ZhouJ, ZhaoY, ZhouH, et al. Autophagy plays an essential role in cigarette smoke-induced expression of MUC5AC in airway epithelium. Am J Physiol Lung Cell Mol Physiol. 2016;310(11):L1042–L1052. doi:10.1152/ajplung.00418.201527036871
  • SuB, LiuT, FanH, ChenF, DingH. Inflammatory markers and the risk of chronic obstructive pulmonary disease: a systematic review and meta-analysis. PLoS One. 2016;11(4):e0150586. doi:10.1371/journal.pone.015058627104349
  • LazarZ, MullnerN, LucattelliM, et al. NTPDase1/CD39 and aberrant purinergic signalling in the pathogenesis of COPD. Eur Respir J. 2016;47(1):254–263. doi:10.1183/13993003.02144-201426541524
  • BaudißK, AyataCK, LazarZ, et al. Ceramide-1-phosphate inhibits cigarette smoke-induced airway inflammation. Eur Respir J. 2015;45(6):1669–1680. doi:10.1183/09031936.0008001425614161
  • SchenkB, FuldaS. Reactive oxygen species regulate Smac mimetic/TNFα-induced necroptotic signaling and cell death. Oncogene. 2015;34(47):5796. doi:10.1038/onc.2015.3525867066
  • ZhangY, SuSS, ZhaoS, et al. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun. 2017;8(1):14329. doi:10.1038/ncomms1432928176780
  • BoukhenounaS, WilsonMA, BahmedK, KosmiderB. Reactive oxygen species in chronic obstructive pulmonary disease. Oxid Med Cell Longev. 2018;2018:5730395. doi:10.1155/2018/573039529599897
  • LeeIT, YangCM. Inflammatory signalings involved in airway and pulmonary diseases. Mediators Inflamm. 2013;2013:791231. doi:10.1155/2013/79123123690670
  • WeinlichR, OberstA, BeereHM, GreenDR. Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Bio. 2016;18(2):127–136. doi:10.1038/nrm.2016.14927999438
  • FanEKY, FanJ. Regulation of alveolar macrophage death in acute lung inflammation. Resp Res. 2018;19(1):50. doi:10.1186/s12931-018-0756-5
  • XuF, LuoM, HeL, et al. Necroptosis contributes to urban particulate matter-induced airway epithelial injury. Cell Physio Biochem. 2018;46(2):699–712. doi:10.1159/000488726
  • PouwelsSD, ZijlstraGJ, ToornM, et al. Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 2016;310(4):L377–L386. doi:10.1152/ajplung.00174.201526719146
  • DomejW, OettlK, RennerW. Oxidative stress and free radicals in COPD–implications and relevance for treatment. Int J Chron Obstruct Pulmon Dis. 2014;9:1207–1224. doi:10.2147/COPD.S5122625378921
  • Schulze-OsthoffK, BakkerAC, VanhaesebroeckB, BeyaertR, JacobWA, FiersW. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem. 1992;267(8):5317–5323.1312087
  • LocatelliSL, ClerisL, StirparoGG, et al. BIM upregulation and ROS-dependent necroptosis mediate the antitumor effects of the HDACi givinostat and sorafenib in hodgkin lymphoma cell line xenografts. Leukemia. 2014;28(9):1861–1871. doi:10.1038/leu.2014.8124561519
  • SharafkhanehA, HananiaNA, KimV. Pathogenesis of emphysema: from the bench to the bedside. Proc Am Thorac Soc. 2008;5(4):475–477. doi:10.1513/pats.200708-126ET18453358
  • AroraS, DevK, AgarwalB, DasP, SyedMA. Macrophages: their role, activation and polarization in pulmonary diseases. Immunobiology. 2017;223(4–5):S0171298517302073.
  • BarnesPJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med. 2014;35(1):71–86. doi:10.1016/j.ccm.2013.10.00424507838
  • SuHL, JuHS, SongJH, et al. Inhibition of insulin-like growth factor receptor-1 reduces necroptosis-related markers and attenuates LPS-induced lung injury in mice. Biochem Biophys Res Commun. 2018;498(4):877–883. doi:10.1016/j.bbrc.2018.03.07429545181
  • BologneseAC, YangWL, HansenLW, et al. Inhibition of necroptosis attenuates lung injury and improves survival in neonatal sepsis. Surgery. 2018;S0039–6060(18):30096–30105.
  • ZhaoH, NingJ, LemaireA, et al. Necroptosis and parthanatos are involved in remote lung injury after receiving ischemic renal allografts in rats. Kidney Int. 2015;87(4):738–748. doi:10.1038/ki.2014.38825517913
  • FuZ, DengB, LiaoY, et al. The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis. BMC Cancer. 2013;13(1):580. doi:10.1186/1471-2407-13-58024314238
  • Di StefanoA, CaramoriG, OatesT, et al. Increased expression of nuclear factor- B in bronchial biopsies from smokers and patients with COPD. Eur Respir J. 2002;20(3):556–563. doi:10.1183/09031936.02.0027200212358328
  • MarwickJA, KirkhamPA, StevensonCS, et al. Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am J Respir Cell Mol Biol. 2004;31(6):633–642. doi:10.1165/rcmb.2004-0006OC15333327
  • CampbellKJ, PerkinsND. Post-translational modification of RelA(p65) NF-kappaB. Biochem Soc Trans. 2004;32(6):1087–1089. doi:10.1042/BST32108715506973
  • YatimN, HélèneJS, SusanaO, et al. RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8 T cells. Science. 2015;350(6258):328. doi:10.1126/science.aad039526405229
  • MoriwakiK, BalajiS, McquadeT, MalhotraN, KangJ, ChanFKM. The necroptosis adaptor RIPK3 promotes injury-induced cytokine expression and tissue repair. Immunity. 2014;41(4):567–578. doi:10.1016/j.immuni.2014.09.01625367573