336
Views
16
CrossRef citations to date
0
Altmetric
Review

How Do Innate Immune Cells Contribute to Airway Remodeling in COPD Progression?

ORCID Icon, &
Pages 107-116 | Published online: 10 Jan 2020

References

  • MontesOM, Pérez-PadillaR. Global initiative for Chronic Obstructive Lung Disease (GOLD)-2017: the alat perspective. Arch Bronconeumol. 2017;53(3):87.28222935
  • DerekEB, KangyunW, GeoffreyDV, et al. Triggering receptor expressed on myeloid cells-2 expression tracks with M2-like macrophage activity and disease severity in COPD. Chest. 2015;153(1):77–86.
  • BurgelPR, BourdinA, PiletteC, et al. Structural abnormalities and inflammation in COPD: a focus on small airways. Rev Mal Respir. 2011;28(6):749–760. doi:10.1016/j.rmr.2011.01.00921742236
  • PiniL, PinelliV, ModinaD, et al. Central airways remodeling in COPD patients. Int J Chron Obstruct Pulmon Dis. 2014;927–933. doi:10.2147/COPD.S5247825214779
  • ThoNV, RyujinY, OgawaE, et al. Relative contributions of emphysema and airway remodelling to airflow limitation in COPD: consistent results from two cohorts. Respirology. 2015;20(4):594–601. doi:10.1111/resp.1250525788016
  • ShimizuK, HasegawaM, MakitaH, et al. Comparison of airway remodeling assessed by computed tomography in asthma and COPD. Respir Med. 2011;105(9):1275–1283. doi:10.1016/j.rmed.2011.04.00721646007
  • DournesG, LaurentF, CosteF, et al. Computed tomographic measurement of airway remodeling and emphysema in advanced chronic obstructive pulmonary disease. Correlation with pulmonary hypertension. Am J Respir Crit Care Med. 2015;191(1):63. doi:10.1164/rccm.201408-1423OC25393421
  • HoggJC, TimensW. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol. 2009;4(1):435–459. doi:10.1146/annurev.pathol.4.110807.09214518954287
  • JonesRL, NoblePB, ElliotJG, et al. Airway remodelling in COPD: it’s not asthma. Respirology. 2016;21(8):1347–1356. doi:10.1111/resp.1284127381663
  • MichaeloudesC, KuoCH, HajiG, et al. Metabolic re-patterning in COPD airway smooth muscle cells. Eur Respir J. 2017;50(5):1700202. doi:10.1183/13993003.00202-201729191950
  • LimjunyawongN, CraigJM, LagasséHA, et al. Experimental progressive emphysema in BALB/cJ mice as a model for chronic alveolar destruction in humans. Am J Physiol Lung Cell Mol Physiol. 2015;309(7):L662–L676. doi:10.1152/ajplung.00214.201526232300
  • MccullaghBN, ComellasAP, BallasZK, et al. Antibody deficiency in patients with frequent exacerbations of Chronic Obstructive Pulmonary Disease (COPD). PLoS One. 2017;12(2):e0172437. doi:10.1371/journal.pone.017243728212436
  • MoisieievaNV, BuryaLV, KapustianskayaAA, et al. Comprehensive patterns of comorbidity: copd and depression. Aspects of treatment. Wiad Lek. 2018;71:588–591.29783230
  • HoonhorstSJM, HackenNHTT, AdèleTLTL, et al. Lower Corticosteroid skin blanching response is associated with severe COPD. PLoS One. 2014;9(3):e91788. doi:10.1371/journal.pone.009178824622644
  • LöfdahlM, KaarteenahoR, Lappi-BlancoE, et al. Tenascin-C and alpha-smooth muscle actin positive cells are increased in the large airways in patients with COPD. Respir Res. 2011;12(15):48. doi:10.1186/1465-9921-12-4821496259
  • VictorK, MichelleO, HebaD, et al. Chronic bronchitis and current smoking are associated with more goblet cells in moderate to severe COPD and smokers without airflow obstruction. PLoS One. 2015;10(2):e0116108. doi:10.1371/journal.pone.011610825646735
  • AoshibaK, NagaiA. Differences in airway remodeling between asthma and chronic obstructive pulmonary disease. Clin Rev Allergy Immunol. 2004;27(1):35–43. doi:10.1385/CRIAI:27:115347849
  • RutgersSR, PostmaDS, TenHNHT, et al. Ongoing airway inflammation in patients with COPD who do not currently smoke. Thorax. 2000;55:12–18. doi:10.1136/thorax.55.1.1210607796
  • EapenMS, McalindenKD, TanD, et al. Inflammation paradox–a detailed analysis of inflammatory profile in the large and small airway wall in mild to moderate chronic obstructive pulmonary disease (COPD) patients. Eur Respir J. 2016;48:120.
  • ZaniniA, SpanevelloA, BaraldoS, et al. Decreased maturation of dendritic cells in the central airways of COPD patients is associated with VEGF, TGF-β and vascularity. Respiration. 2014;87(3):234–242. doi:10.1159/00035674924435103
  • BirchJ, JohnsonG, JiwaK, et al. S65 Large and small airway epithelial cell senescence present in COPD and bronchiectasis. Thorax. 2013;68(Suppl 3):35. doi:10.1136/thoraxjnl-2013-204457.72
  • HoggJC, ChuF, UtokaparchS, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:2645–2653. doi:10.1056/NEJMoa03215815215480
  • Abo-ZeidA, SabryI, HanyH. Effect of smoking cessation on airway inflammation in COPD. Egypt J Bronchol. 2013;7(1):13–20.
  • EapenMS, HansbroPM, McalindenK, et al. Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD). Sci Rep. 2017;7(1):13392. doi:10.1038/s41598-017-13888-x29042607
  • EltboliO, BafadhelM, HollinsF, et al. COPD exacerbation severity and frequency is associated with impaired macrophage efferocytosis of eosinophils. BMC Pulm Med. 2014;14(1):1–10. doi:10.1186/1471-2466-14-11224387157
  • StefanoAD, CaramoriG, RicciardoloFLM, et al. Cellular and molecular mechanisms in chronic obstructive pulmonary disease: an overview. Clin Exp Allergy. 2004;34(8):1156–1167. doi:10.1111/j.1365-2222.2004.02030.x15298554
  • StollP, UlrichM, BratkeK, et al. Imbalance of dendritic cell co-stimulation in COPD. Respir Res. 2015;16(1):19. doi:10.1186/s12931-015-0174-x25775429
  • MoriM, AnderssonCK, SvedbergKA, et al. Appearance of remodelled and dendritic cell-rich alveolar-lymphoid interfaces provides a structural basis for increased alveolar antigen uptake in chronic obstructive pulmonary disease. Thorax. 2013;68(6):521. doi:10.1136/thoraxjnl-2012-20287923412435
  • PaceE, FerraroM, MinerviniMI, et al. Innate immunity responses are differently altered in central and distal airways of COPD patients. American Thoracic Society 2009 International Conference; San Diego, California. May 15-20, 2009.
  • PerotinJM, AdamD, Vella-BoucaudJ, et al. Delay of airway epithelial wound repair in COPD is associated with airflow obstruction severity. Respir Res. 2014;15(1):1–9. doi:10.1186/s12931-014-0151-924397246
  • ManzelLJ, ShiL, O’ShaughnessyPT, ThornePS, LookDC. Inhibition by cigarette smoke of nuclear factor-κB-dependent response to bacteria in the airway. Am J Respir Cell Mol Biol. 2011;44:155–165. doi:10.1165/rcmb.2009-0454OC20348206
  • SohalSS, EapenMS, WardC, et al. Epithelial mesenchymal transition (EMT): a necessary new therapeutic target in COPD? Am J Respir Crit Care Med. 2017;196(3):393. doi:10.1164/rccm.201704-0771LE28640653
  • GanesanS, SajjanUS. Repair and remodeling of airway epithelium after injury in Chronic Obstructive Pulmonary Disease. Respir Care. 2013;2(3):145–154.
  • SaiedEM, BediwyAS. Expression of epidermal growth factor receptor (EGFR) in the bronchial epithelium of patients with chronic obstructive pulmonary disease (COPD). Eur Respir J. 2011;125(55):3823.
  • MartinC, Frija-MassonJ, BurgelPR, et al. Targeting mucus hypersecretion: new therapeutic opportunities for COPD? Drugs. 2014;74(10):1073–1089. doi:10.1007/s40265-014-0235-324890395
  • PouwelsSD, HeijinkIH, HackenNHT, et al. DAMPs activating innate and adaptive immune responses in COPD. Mucosal Immunol. 2014;7(2):215–226. doi:10.1038/mi.2013.7724150257
  • PouwelsSD, Van GeffenWH, JonkerMR, et al. Increased neutrophil expression of pattern recognition receptors during COPD exacerbations. Respirology. 2017;22(2):401–404. doi:10.1111/resp.1291227679416
  • KinoseD, OgawaE, KudoM, et al. Association of COPD exacerbation frequency with gene expression of pattern recognition receptors in inflammatory cells in induced sputum. Clin Respir J. 2016;10(1):11–21. doi:10.1111/crj.2016.10.issue-124902764
  • Halper-StrombergE, YunJH, ParkerMM, et al. Systemic markers of adaptive and innate immunity are associated with COPD severity and spirometric disease progression. Am J Respir Cell Mol Biol. 2018;58(4):500–509. doi:10.1165/rcmb.2017-0373OC29206476
  • FreemanCM, CurtisJL. Lung dendritic cells: shaping immune responses throughout chronic obstructive pulmonary disease progression. Am J Respir Cell Mol Biol. 2017;56(2):152.27767327
  • GiviME, RedegeldFA, FolkertsG, et al. Dendritic cells in pathogenesis of COPD. Curr Pharm Des. 2012;18(16):2329–2335. doi:10.2174/13816121280016606822390696
  • GiviME, FolkertsG, WagenaarGTM, et al. Cigarette smoke differentially modulates dendritic cell maturation and function in time. Respir Res. 2015;16(1):1–10. doi:10.1186/s12931-015-0291-625567521
  • ShanM, ChengHF, SongLZ, et al. Lung myeloid dendritic cells coordinately induce TH1 and TH17 responses in human emphysema. Sci Transl Med. 2009;1(4):4ra10. doi:10.1126/scitranlsmed.3000154
  • MaYJ. Correlation between small intestinal bacterial overgrowth and dendritic cell phenotype and function in cirrhotic patients with hepatitis B. World J Gastroenterol. 2016;24(3):443.
  • BarnesPJ. Alveolar macrophages as orchestrators of COPD. COPD. 2004;1:59–70. doi:10.1081/COPD-12002870116997739
  • StewartJI, CrinerGJ. The small airways in chronic obstructive pulmonary disease: pathology and effects on disease progression and survival. Curr Opin Pulm Med. 2013;19(2):109–115. doi:10.1097/MCP.0b013e32835ceefc23325030
  • StoutRD, SuttlesJ. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol. 2004;76(3):509–513. doi:10.1189/jlb.050427215218057
  • DewhurstJA, LeaS, HardakerE, et al. Characterisation of lung macrophage subpopulations in COPD patients and controls. Sci Rep. 2017;7(1):7143. doi:10.1038/s41598-017-07101-228769058
  • BerensonCS, KruzelRL, EberhardtE, et al. Phagocytic dysfunction of human alveolar macrophages and severity of chronic obstructive pulmonary disease. J Infect Dis. 2013;208(12):2036–2045. doi:10.1093/infdis/jit40023908477
  • EurlingsIM, DentenerMA, MerckenEM, et al. A comparative study of matrix remodeling in chronic models for COPD; mechanistic insights into the role of TNF-α. Am J Physiol Lung Cell Mol Physiol. 2014;307(7):557–565. doi:10.1152/ajplung.00116.2014
  • EurlingsIM, ReynaertNL, van de WeteringC, et al. Involvement of c-Jun N-terminal kinase in TNF-α-driven remodeling. Am J Respir Cell Mol Biol. 2017;56(3):393. doi:10.1165/rcmb.2015-0195OC27875656
  • PouwelsSD, Van GeffenWH, JonkerMR, et al. Increased neutrophil expression of pattern recognition receptors during COPD exacerbations. Respirology. 2016;22(2):401. doi:10.1111/resp.1291227679416
  • EllingsenJ, HedenströmH, HögmanM, et al. The relationship between blood neutrophils, blood eosinophils and exacerbations of COPD–results from the TIE-study. Eur Respir J. 2016;48(suppl 60):PA1013.
  • StockleyRA. Neutrophils and the pathogenesis of COPD. Chest. 2002;121(5):151S–155S. doi:10.1378/chest.121.5_suppl.151S12010844
  • TulahAS, ParkerSG, MoffattMF, et al. The role of ALOX5AP, LTA4H and LTB4R polymorphisms in determining baseline lung function and COPD susceptibility in UK smokers. BMC Med Genet. 2011;12(1):173. doi:10.1186/1471-2350-12-17322206291
  • SngJJ, PrazakovaS, ThomasPS, et al. MMP-8, MMP-9 and neutrophil elastase in peripheral blood and exhaled breath condensate in COPD. COPD. 2017;14(2):238–244. doi:10.1080/15412555.2016.124979027880043
  • EchevarríaLU, LeimgruberC, GonzálezJG, et al. Evidence of eosinophil extracellular trap cell death in COPD: does it represent the trigger that switches on the disease? Int J Chron Obstruct Pulmon Dis. 2017;12:885–896. doi:10.2147/COPD28352169
  • KaurM, BeardsallM, SinghD TLR stimulation induces glucocorticoid insensitive production of functional neutrophil chemoattractant from COPD alveolar macrophages. American Thoracic Society 2011 International Conference Denver, Colorado; May 13-18, 2011.
  • SinD, van EedenSF. Neutrophil-mediated lung damage: a new COPD phenotype? Respiration. 2012;83(2):103–105. doi:10.1159/00033417822142967
  • RijavecM, VolarevicS, OsolnikK, et al. Natural killer T cells in pulmonary disorders. Respir Med. 2011;105(supplement 1):S20. doi:10.1016/S0954-6111(11)70006-322015081
  • VijayanandP, SeumoisG, PickardC, et al. Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. N Engl J Med. 2007;356(14):1410–1422. doi:10.1056/NEJMoa06469117409322
  • UrbanowiczRA, LambJR, ToddI, et al. Altered effector function of peripheral cytotoxic cells in COPD. Respir Res. 2009;22:53. doi:10.1186/1465-9921-10-53
  • HodgeG, MukaroV, HolmesM, et al. Enhanced cytotoxic function of natural killer and natural killer T-like cells associated with decreased CD94 (Kp43) in the chronic obstructive pulmonary disease airway. Respirology. 2013;18(2):369–376. doi:10.1111/j.1440-1843.2012.02287.x23062183
  • TsaoCC, TsaoPN, ChenYG, et al. Repeated activation of lung invariant NKT cells results in Chronic Obstructive Pulmonary Disease-like symptoms. PLoS One. 2016;11(1):e0147710. doi:10.1371/journal.pone.014771026811900
  • EmotoM, KaufmannSH. Liver NKT cells: an account of heterogeneity. Trends Immunol. 2003;24:364–369. doi:10.1016/S1471-4906(03)00162-512860526
  • TangY, LiX, WangM, et al. Increased numbers of NK cells, NKT-like cells, and NK inhibitory receptors in Peripheral blood of patients with chronic obstructive disease. Clin Dev Immunol. 2013;2013:721–782.
  • ZeigerRS, TranTN, ButlerRK, et al. Relationship of blood eosinophil count to exacerbations in Chronic Obstructive Pulmonary Disease. J Allergy Clin Immunol Pract. 2018;6(3):944–954. doi:10.1016/j.jaip.2017.10.00429153881
  • VillalobosRE, MagallanesJ, DavidwangA. Blood eosinophilia as predictor for patient outcomes in COPD exacerbations: a systematic review and meta-analysis. Thorax. 2017;71(Suppl 3):A160–A160. doi:10.1136/thoraxjnl-2016-209333.286
  • BaloiraVA, PallariesSA. Chronic obstructive pulmonary disease with eosinophilia, an emerging phenotype? Arch Bronconeumol. 2016;52(4):177–178. doi:10.1016/j.arbr.2016.02.01226852358
  • SinghD, KolsumU, BrightlingCE, et al. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J. 2014;44(6):1697–1700. doi:10.1183/09031936.0016241425323230
  • MortazE, FolkertsG, RedegeldF. Mast cells and COPD. Pulm Pharmacol Ther. 2011;24(4):372. doi:10.1016/j.pupt.2011.03.007
  • SoltaniA, EweYP, LimZS, et al. Mast cells in COPD airways: relationship to bronchodilator responsiveness and angiogenesis. Eur Respir J. 2012;39(6):1361–1367. doi:10.1183/09031936.0008441122034650
  • GladerP, WachenfeldtKV, LöfdahlCG. Systemic CD4+ T-cell activation is correlated with FEV 1, in smokers. Respir Med. 2006;100(6):1088–1093. doi:10.1016/j.rmed.2005.09.02516246539
  • SienaL, GjomarkajM, ElliotJ, et al. Reduced apoptosis of CD8+ T-lymphocytes in the airways of smokers with mild/moderate COPD. Respir Med. 2011;105(10):1491–1500. doi:10.1016/j.rmed.2011.04.01421612902
  • SullivanAK, SimonianPL, FaltaMT, et al. Oligoclonal CD4+ T cells in the lungs of patients with severe emphysema. Am J Respir Crit Care Med. 2005;172:590–596. doi:10.1164/rccm.200410-1332OC15937291
  • WenY, ReidDW, ZhangD, et al. Assessment of airway inflammation using sputum, BAL, and endobronchial biopsies in current and ex-smokers with established COPD. Int J Chron Obstruct Pulmon Dis. 2010;5:327–334.21037956
  • LapperreTS, PostmaDS, GosmanMME, et al. Relation between duration of smoking cessation and bronchial inflammation in COPD. Thorax. 2006;61(2):115. doi:10.1136/thx.2005.04051916055612
  • GeerdinkJX, SimonsSO, PikeR, et al. Differences in systemic adaptive immunity contribute to the ‘frequent exacerbator’ COPD phenotype. Respir Res. 2016;17(1):140. doi:10.1186/s12931-016-0456-y27793198
  • CaramoriG, RuggeriP, DiSA, et al. Autoimmunity and COPD: clinical implications. Chest. 2018;153(6):1424–1431. doi:10.1016/j.chest.2017.10.03329126842
  • ChiapporiA, FolliC, BalbiF, et al. CD4+CD25 high DC 127-regulatory T-cells in COPD: smoke and drugs effect. World Allergy Organ J. 2016;9(1):5. doi:10.1186/s40413-016-0095-226904157
  • DuanMC, ZhangJQ, LiangY, et al. Infiltration of IL-17-producing T cells and Treg cells in a mouse model of smoke-induced emphysema. Inflammation. 2016;39(4):1334–1344. doi:10.1007/s10753-016-0365-827150336
  • ToczyskaI, Zwoliå„SkaE, ChcialowskiA. Influence of inhaled corticosteroids on bronchial inflammation and pulmonary function in Chronic Obstructive Pulmonary Disease with moderate obstruction. Adv Exp Med Biol. 2018;1047:41–52.29181828
  • SoltaniA, WaltersEH, ReidDW, et al. Inhaled corticosteroid normalizes some but not all airway vascular remodeling in COPD. Int J Chron Obstruct Pulmon Dis. 2016;22(11):2359–2367. doi:10.2147/COPD.S113176
  • SohalSS, SoltaniA, ReidD, et al. A randomized controlled trial of inhaled corticosteroids (ICS) on markers of epithelial-mesenchymal transition (EMT) in large airway samples in COPD: an exploratory proof of concept study. Int J Chron Obstruct Pulmon Dis. 2014;27(9):533–542. doi:10.2147/COPD.S63911
  • SinghR, MackayAJ, PatelAR, et al. Inflammatory thresholds and the species-specific effects of colonising bacteria in stable chronic obstructive pulmonary disease. Respir Res. 2014;15(1):1–10. doi:10.1186/s12931-014-0114-124397246
  • D’AnnaSE, BalbiB, CappelloF, et al. Bacterial–viral load and the immune response in stable and exacerbated COPD: significance and therapeutic prospects. Int J Chron Obstruct Pulmon Dis. 2016;11(1):445. doi:10.2147/COPD.S9339827042037
  • BlasiF, ManteroM, AlibertiS. Antibiotics as immunomodulant agents in COPD. Curr Opin Pharmacol. 2012;12(3):293–299. doi:10.1016/j.coph.2012.01.00622321568
  • GiustiM, BlasiF, IoriI, et al. Prulifloxacin vs levofloxacin for exacerbation of COPD after failure of other antibiotics. COPD. 2016;13(5):555–560. doi:10.3109/15412555.2016.115223627027547
  • PatelA, WilsonR. Newer fluoroquinolones in the treatment of acute exacerbations of COPD. Int J Chron Obstruct Pulmon Dis. 2012;1(3):243–250.
  • BrunoA, CipollinaC, DiVS, et al. Ceftaroline modulates the innate immune and host defense responses of immunocompetent cells exposed to cigarette smoke. Toxicol Lett. 2017;279:9–15. doi:10.1016/j.toxlet.2017.07.87828720485
  • HeulensN, KorfH, JanssensW. Innate immune modulation in COPD: moving closer towards vitamin D therapy. J Pharmacol Exp Ther. 2015;353(2):360–368. doi:10.1124/jpet.115.22303225755208
  • BelEH, TenBA. New Anti-eosinophil drugs for asthma and COPD: targeting the trait! Chest. 2017;152(6):1276–1282. doi:10.1016/j.chest.2017.05.01928583618