161
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Serum Levels of Autoantibodies Against Extracellular Antigens and Neutrophil Granule Proteins Increase in Patients with COPD Compared to Non-COPD Smokers

, , , , , , , ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 189-200 | Published online: 29 Jan 2020

References

  • HoggJC, TimensW. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol. 2009;4:435–459. doi:10.1146/annurev.pathol.4.110807.09214518954287
  • Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800. doi:10.1016/S0140-6736(15)60692-426063472
  • TuderRM, PetracheI. Pathogenesis of chronic obstructive pulmonary disease. J Clin Invest. 2012;122(8):2749–2755. doi:10.1172/JCI6032422850885
  • CaramoriG, CasolariP, BarczykA, DurhamAL, DiSA, AdcockI. COPD immunopathology. Semin Immunopathol. 2016;38(4):497–515. doi:10.1007/s00281-016-0561-527178410
  • TerzikhanN, VerhammeKM, HofmanA, StrickerBH, BrusselleGG, LahousseL. Prevalence and incidence of COPD in smokers and non-smokers: the Rotterdam Study. Eur J Epidemiol. 2016;31(8):785–792. doi:10.1007/s10654-016-0132-z26946425
  • LundbackB, LindbergA, LindstromM, et al. Not 15 but 50% of smokers develop COPD?–Report from the Obstructive Lung Disease in Northern Sweden Studies. Respir Med. 2003;97(2):115–122. doi:10.1053/rmed.2003.144612587960
  • BrusselleGG, JoosGF, BrackeKR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 2011;378(9795):1015–1026. doi:10.1016/S0140-6736(11)60988-421907865
  • ShaykhievR, CrystalRG. Innate immunity and chronic obstructive pulmonary disease: a mini-review. Gerontology. 2013;59(6):481–489. doi:10.1159/00035417324008598
  • DeCG, LunghiB, BartalesiB, et al. Severe Reduction in Number and Function of Peripheral T Cells Does Not Afford Protection toward Emphysema and Bronchial Remodeling Induced in Mice by Cigarette Smoke. Am J Pathol. 2016;186(7):1814–1824. doi:10.1016/j.ajpath.2016.03.00227157991
  • DeCG, BartalesiB, CavarraE, BalzanoE, LungarellaG, LucattelliM. Ongoing lung inflammation and disease progression in mice after smoking cessation: beneficial effects of formyl-peptide receptor blockade. Am J Pathol. 2018;188(10):2195–2206. doi:10.1016/j.ajpath.2018.06.01030031729
  • DunneAE, KawamatawongT, FenwickPS, et al. Direct inhibitory effect of the PDE4 inhibitor roflumilast on neutrophil migration in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2019;60(4):445–453. doi:10.1165/rcmb.2018-0065OC30395484
  • FesslerMB. Drugging the mighty neutrophil in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2019;60(4):382–383. doi:10.1165/rcmb.2018-0370ED30508388
  • GambleE, GrootendorstDC, HattotuwaK, et al. Airway mucosal inflammation in COPD is similar in smokers and ex-smokers: a pooled analysis. Eur Respir J. 2007;30(3):467–471. doi:10.1183/09031936.0001300617504799
  • RutgersSR, PostmaDS, Ten HackenNH, et al. Ongoing airway inflammation in patients with COPD who do not currently smoke. Thorax. 2000;55(1):12–18. doi:10.1136/thorax.55.1.1210607796
  • BrusselleGG, DemoorT, BrackeKR, BrandsmaCA, TimensW. Lymphoid follicles in (very) severe COPD: beneficial or harmful? Eur Respir J. 2009;34(1):219–230. doi:10.1183/09031936.0015020819567605
  • HoggJC, ChuF, UtokaparchS, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645–2653. doi:10.1056/NEJMoa03215815215480
  • SeysLJ, VerhammeFM, SchinwaldA, et al. Role of B cell-activating factor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192(6):706–718. doi:10.1164/rccm.201501-0103OC26266827
  • CaramoriG, RuggeriP, DiSA, et al. Autoimmunity and COPD: clinical Implications. Chest. 2018;153(6):1424–1431. doi:10.1016/j.chest.2017.10.03329126842
  • LeeSH, GoswamiS, GrudoA, et al. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med. 2007;13(5):567–569. doi:10.1038/nm158317450149
  • WenL, Krauss-EtschmannS, PetersenF, YuX. Autoantibodies in chronic obstructive pulmonary disease. Front Immunol. 2018;9:66. doi:10.3389/fimmu.2018.0006629422903
  • Feghali-BostwickCA, GadgilAS, OtterbeinLE, et al. Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(2):156–163. doi:10.1164/rccm.200701-014OC17975205
  • PackardTA, LiQZ, CosgroveGP, BowlerRP, CambierJC. COPD is associated with production of autoantibodies to a broad spectrum of self-antigens, correlative with disease phenotype. Immunol Res. 2013;55(1–3):48–57. doi:10.1007/s12026-012-8347-x22941590
  • ChengG, ZhangN, WangY, RuiJ, YinX, CuiT. Antibodies of IgG, IgA and IgM against human bronchial epithelial cell in patients with chronic obstructive pulmonary disease. Clin Lab. 2016;62(6):1101–1108. doi:10.7754/Clin.Lab.2015.15102027468572
  • KarayamaM, InuiN, SudaT, NakamuraY, NakamuraH, ChidaK. Antiendothelial cell antibodies in patients with COPD. Chest. 2010;138(6):1303–1308. doi:10.1378/chest.10-086320576735
  • KirkhamPA, CaramoriG, CasolariP, et al. Oxidative stress-induced antibodies to carbonyl-modified protein correlate with severity of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;184(7):796–802. doi:10.1164/rccm.201010-1605OC21965015
  • NunezB, SauledaJ, AntoJM, et al. Anti-tissue antibodies are related to lung function in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183(8):1025–1031. doi:10.1164/rccm.201001-0029OC21097696
  • Taraseviciene-StewartL, ScerbaviciusR, ChoeKH, et al. An animal model of autoimmune emphysema. Am J Respir Crit Care Med. 2005;171(7):734–742. doi:10.1164/rccm.200409-1275OC15563631
  • Cabral-MarquesO, MarquesA, GiilLM, et al. GPCR-specific autoantibody signatures are associated with physiological and pathological immune homeostasis. Nat Commun. 2018;9(1):5224. doi:10.1038/s41467-018-07598-930523250
  • MadiA, HechtI, Bransburg-ZabaryS, et al. Organization of the autoantibody repertoire in healthy newborns and adults revealed by system level informatics of antigen microarray data. Proc Natl Acad Sci U S A. 2009;106(34):14484–14489. doi:10.1073/pnas.090152810619667184
  • NageleEP, HanM, AcharyaNK, DeMarshallC, KosciukMC, NageleRG. Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS One. 2013;8(4):e60726. doi:10.1371/journal.pone.006072623589757
  • VogelmeierCF, CrinerGJ, MartinezFJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med. 2017;195(5):557–582. doi:10.1164/rccm.201701-0218PP28128970
  • HarunaA, MuroS, NakanoY, et al. CT scan findings of emphysema predict mortality in COPD. Chest. 2010;138(3):635–640. doi:10.1378/chest.09-283620382712
  • BatemanED, HurdSS, BarnesPJ, et al..Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J.2008;31:143–178. doi:10.1183/09031936.0013870718166595
  • GowenMF, GilesKM, SimpsonD, et al. Baseline antibody profiles predict toxicity in melanoma patients treated with immune checkpoint inhibitors. J Transl Med. 2018;16(1):82. doi:10.1186/s12967-018-1452-429606147
  • SmythGK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3. doi:10.2202/1544-6115.102716646809
  • LiC, HungWW. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol. 2001;2(8):RESEARCH0032.11532216
  • YinJ, ZhengJ, DengF, et al. Gene Expression profiling of lacrimal glands identifies the ectopic expression of MHC II on glandular cells as a presymptomatic feature in a mouse model of primary sjogren’s syndrome. Front Immunol. 2018;9:2362. doi:10.3389/fimmu.2018.0236230429844
  • HuangD, ShermanBT, LempickiRA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. doi:10.1093/nar/gkn92319033363
  • RorvigS, OstergaardO, HeegaardNH, BorregaardN. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: correlation with transcriptome profiling of neutrophil precursors. J Leukoc Biol. 2013;94(4):711–721. doi:10.1189/jlb.121261923650620
  • ChernevaRV, GeorgievOB, PetrovaDS, et al. The role of small heat-shock protein alphaB-crystalline (HspB5) in COPD pathogenesis. Int J Chron Obstruct Pulmon Dis. 2012;7:633–640. doi:10.2147/COPD.S3492923055712
  • KuoYB, ChangCA, WuYK, et al. Identification and clinical association of anti-cytokeratin 18 autoantibody in COPD. Immunol Lett. 2010;128(2):131–136. doi:10.1016/j.imlet.2009.12.01720038439
  • LuoXM, LiuXY, TangJH, et al. Autoantibodies against CD80 in patients with COPD. Clin Transl Immunol. 2016;5(10):e103. doi:10.1038/cti.2016.57
  • XiongY, GaoS, LuoG, et al. Increased circulating autoantibodies levels of IgG, IgA, IgM against cytokeratin 18 and cytokeratin 19 in chronic obstructive pulmonary disease. Arch Med Res. 2017;48(1):79–87. doi:10.1016/j.arcmed.2017.01.00728577873
  • EsaguyN, FreitasPM, AguasAP. Anti-lactoferrin autoantibodies in rheumatoid arthritis. Clin Exp Rheumatol. 1993;11(5):581–582.8275600
  • GreeneCM, LowTB, O’NeillSJ, McElvaneyNG. Anti-proline-glycine-proline or antielastin autoantibodies are not evident in chronic inflammatory lung disease. Am J Respir Crit Care Med. 2010;181(1):31–35. doi:10.1164/rccm.200904-0545OC19762563
  • NassbergerL, HultquistR, SturfeltG. Occurrence of anti-lactoferrin antibodies in patients with systemic lupus erythematosus, hydralazine-induced lupus, and rheumatoid arthritis. Scand J Rheumatol. 1994;23(4):206–210. doi:10.3109/030097494091030628091147
  • AvrameasS, SelmiC. Natural autoantibodies in the physiology and pathophysiology of the immune system. J Autoimmun. 2013;41:46–49. doi:10.1016/j.jaut.2013.01.00623384670
  • DalmauJ, GrausF. Antibody-mediated encephalitis. N Engl J Med. 2018;378(9):840–851. doi:10.1056/NEJMra170871229490181
  • HoftbergerR, RosenfeldMR, DalmauJ. Update on neurological paraneoplastic syndromes. Curr Opin Oncol. 2015;27(6):489–495. doi:10.1097/CCO.000000000000022226335665
  • HoenderdosK, CondliffeA. The neutrophil in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2013;48(5):531–539. doi:10.1165/rcmb.2012-0492TR23328639
  • CardiniS, DalliJ, FineschiS, PerrettiM, LungarellaG, LucattelliM. Genetic ablation of the fpr1 gene confers protection from smoking-induced lung emphysema in mice. Am J Respir Cell Mol Biol. 2012;47(3):332–339. doi:10.1165/rcmb.2012-0036OC22461430
  • CickoS, LucattelliM, MullerT, et al. Purinergic receptor inhibition prevents the development of smoke-induced lung injury and emphysema. J Immunol. 2010;185(1):688–697. doi:10.4049/jimmunol.090404220519655
  • VincentT, PlaweckiM, GoulabchandR, GuilpainP, EliaouJF. Emerging clinical phenotypes associated with anti-cytokine autoantibodies. Autoimmun Rev. 2015;14(6):528–535. doi:10.1016/j.autrev.2015.01.01525633324
  • BrandsmaCA, KerstjensHA, GeerlingsM, et al. The search for autoantibodies against elastin, collagen and decorin in COPD. Eur Respir J. 2011;37(5):1289–1292. doi:10.1183/09031936.0011671021532021
  • CottinV, FabienN, KhouatraC, MoreiraA, CordierJF. Anti-elastin autoantibodies are not present in combined pulmonary fibrosis and emphysema. Eur Respir J. 2009;33(1):219–221. doi:10.1183/09031936.0014020819118235
  • DaffaNI, TighePJ, CorneJM, FaircloughLC, ToddI. Natural and disease-specific autoantibodies in chronic obstructive pulmonary disease. Clin Exp Immunol. 2015;180(1):155–163. doi:10.1111/cei.v180.125469980
  • RinaldiM, LehouckA, HeulensN, et al. Antielastin B-cell and T-cell immunity in patients with chronic obstructive pulmonary disease. Thorax. 2012;67(8):694–700. doi:10.1136/thoraxjnl-2011-20069022442201
  • ViniolC, VogelmeierCF. Exacerbations of COPD. Eur Respir Rev. 2018;27:147. doi:10.1183/16000617.0103-2017