373
Views
14
CrossRef citations to date
0
Altmetric
Review

Chitinases and Chitinase-Like Proteins in Obstructive Lung Diseases – Current Concepts and Potential Applications

, ORCID Icon & ORCID Icon
Pages 885-899 | Published online: 23 Apr 2020

References

  • ShahidiF, AbuzaytounR. Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Adv Food Nutr Res. 2005;49:93–135.15797344
  • SternR. Go fly a chitin: the mystery of chitin and chitinases in vertebrate tissues. Front Biosci Landmark Ed. 2017;22:580–595. doi:10.2741/450427814634
  • SharpRG. A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy. 2013;3(4):757–793. doi:10.3390/agronomy3040757
  • KatoY, OnishiH, MachidaY. Application of chitin and chitosan derivatives in the pharmaceutical field. Curr Pharm Biotechnol. 2003;4(5):303–309. doi:10.2174/138920103348974814529420
  • YangTL. Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. Int J Mol Sci. 2011;12(3):1936–1963. doi:10.3390/ijms1203193621673932
  • ZiatabarS, ZepfJ, RichS, DanielsonBT, BollykyPI, SternR. Chitin, chitinases, and chitin lectins: emerging roles in human pathophysiology. Pathophysiology. 2018;25(4):253–262. doi:10.1016/j.pathophys.2018.02.00530266339
  • TangWJ, FernandezJ, SohnJJ, AmemiyaCT. Chitin is endogenously produced in vertebrates. Curr Biol CB. 2015;25(7):897–900. doi:10.1016/j.cub.2015.01.05825772447
  • WeigelPH, BaggenstossBA, WashburnJL. Hyaluronan synthase assembles hyaluronan on a [GlcNAc(β1,4)]n-GlcNAc(α1→)UDP primer and hyaluronan retains this residual chitin oligomer as a cap at the nonreducing end. Glycobiology. 2017;27(6):536–554. doi:10.1093/glycob/cwx01228138013
  • LomiguenC, VidalL, KozlowskiP, PrancanA, SternR. Possible role of chitin-like proteins in the etiology of alzheimer’s disease. J Alzheimers Dis. 2018;66(2):439–444. doi:10.3233/JAD-18032630282354
  • PatelS, GoyalA. Chitin and chitinase: role in pathogenicity, allergenicity and health. Int J Biol Macromol. 2017;97:331–338. doi:10.1016/j.ijbiomac.2017.01.04228093332
  • BhattacharyaD, NagpureA, GuptaRK. Bacterial chitinases: properties and potential. Crit Rev Biotechnol. 2007;27(1):21–28. doi:10.1080/0738855060116822317364687
  • BussinkAP, SpeijerD, AertsJM, BootRG. Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics. 2007;177(2):959–970. doi:10.1534/genetics.107.07584617720922
  • WiesnerDL, SpechtCA, LeeCK, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015;11(3):e1004701. doi:10.1371/journal.ppat.100470125764512
  • KzhyshkowskaJ, GratchevA, GoerdtS. Human chitinases and chitinase-like proteins as indicators for inflammation and cancer. Biomark Insights. 2007;2:128–146. doi:10.1177/11772719070020002319662198
  • ChangNC, HungSI, HwaKY, et al. A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. J Biol Chem. 2001;276(20):17497–17506. doi:10.1074/jbc.M01041720011297523
  • MengG, ZhaoY, BaiX, et al. Structure of human stabilin-1 interacting chitinase-like protein (SI-CLP) reveals a saccharide-binding cleft with lower sugar-binding selectivity. J Biol Chem. 2010;285(51):39898–39904. doi:10.1074/jbc.M110.13078120724479
  • RenkemaGH, BootRG, AuFL, et al. Chitotriosidase, a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. Eur J Biochem. 1998;251(1–2):504–509. doi:10.1046/j.1432-1327.1998.2510504.x9492324
  • LeeCG, Da SilvaCA, Dela CruzCS, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011;73:479–501. doi:10.1146/annurev-physiol-012110-14225021054166
  • TabataE, KashimuraA, KikuchiA, et al. Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci Rep. 2018;8(1):1461. doi:10.1038/s41598-018-19940-829362395
  • UeharaM, TabataE, IshiiK, et al. Chitinase mRNA levels determined by QPCR in crab-eating monkey (Macaca fascicularis) tissues: species-specific expression of acidic mammalian chitinase and chitotriosidase. Genes. 2018;9(5):244. doi:10.3390/genes9050244
  • MalaguarneraL, SimporèJ, ProdiDA, et al. A 24-bp duplication in exon 10 of human chitotriosidase gene from the sub-Saharan to the Mediterranean area: role of parasitic diseases and environmental conditions. Genes Immun. 2003;4(8):570–574. doi:10.1038/sj.gene.636402514647197
  • CarrollRG. Elsevier's Integrated Physiology. Philadelphia: Mosby Elsevier; 2007:99–115.
  • TiptonMJ, HarperA, PatonJFR, CostelloJT. The human ventilatory response to stress: rate or depth? J Physiol. 2017;595(17):5729–5752. doi:10.1113/JP27459628650070
  • MackI, HectorA, BallbachM, et al. The role of chitin, chitinases, and chitinase-like proteins in pediatric lung diseases. Mol Cell Pediatr. 2015;2(1):3. doi:10.1186/s40348-015-0014-626542293
  • HollakCE, van WeelyS, van OersMH, AertsJM. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest. 1994;93(3):1288–1292. doi:10.1172/JCI1170848132768
  • BootRG, BussinkAP, VerhoekM, de BoerPA, MoornanAF, AertsJM. Marked differences in tissue-specific expression of chitinases in mouse and man. J Histochem Cytochem. 2005;53(10):1283–1292. doi:10.1369/jhc.4A6547.200515923370
  • LétuvéS, KozhichA, HumblesA, et al. Lung chitinolytic activity and chitotriosidase are elevated in chronic obstructive pulmonary disease and contribute to lung inflammation. Am J Pathol. 2010;176(2):638–649. doi:10.2353/ajpath.2010.09045520042671
  • KannegantiM, KambaA, MizoguchiE. Role of chitotriosidase (chitinase 1) under normal and disease conditions. J Epithel Biol Pharmacol. 2012;5:1–9. doi:10.2174/187504430120501000123439988
  • BootRG, BlommaartEF, SwartE, et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem. 2001;276(2):6770–6778. doi:10.1074/jbc.M00988620011085997
  • ZhuZ, ZhengT, HomerRJ, et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science. 2004;304(5677):1678–1682. doi:10.1126/science.109533615192232
  • WakitaS, KimuraM, KatoN, et al. Improved fluorescent labeling of chitin oligomers: chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions. Carbohydr Polym. 2017;164:145–153. doi:10.1016/j.carbpol.2017.01.09528325311
  • RamanathanM, LeeW-K, LaneAP. Increased expression of acidic mammalian chitinase in chronic rhinosinusitis with nasal polyps. Am J Rhinol. 2006;20(3):330–335. doi:10.2500/ajr.2006.20.286916871939
  • SutherlandTE, MaizelsRM, AllenJE. Chitinases and chitinase-like proteins: potential therapeutic targets for the treatment of T-helper type 2 allergies. Clin Exp Allergy. 2009;39(7):943–955. doi:10.1111/cea.2009.39.issue-719400900
  • HomerRJ, ZhuZ, CohnL, et al. Differential expression of chitinases identify subsets of murine airway epithelial cells in allergic inflammation. Am J Physiol Lung Cell Mol Physiol. 2006;291(3):L502–511. doi:10.1152/ajplung.00364.200516556727
  • CozzariniE, BellinM, NorbertoL, et al. CHIT1 and AMCase expression in human gastric mucosa: correlation with inflammation and Helicobacter pylori infection. Eur J Gastroenterol Hepatol. 2009;21(10):1119–1126. doi:10.1097/MEG.0b013e328329742a19242357
  • SeiboldMA, DonnellyS, SolonM, et al. Chitotriosidase is the primary active chitinase in the human lung and is modulated by genotype and smoking habit. J Allergy Clin Immunol. 2008;122(5):944–950. doi:10.1016/j.jaci.2008.08.02318845328
  • HakalaBE, WhiteC, ReckliesAD. Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J Biol Chem. 1993;268(34):25803–25810.8245017
  • RejmanJJ, HurleyWL. Isolation and characterization of a novel 39 kilodalton whey protein from bovine mammary secretions collected during the nonlactating period. Biochem Biophys Res Commun. 1988;150(1):329–334. doi:10.1016/0006-291X(88)90524-43122754
  • LianZ, De LucaP, Di CristofanoA. Gene expression analysis reveals a signature of estrogen receptor activation upon loss of Pten in a mouse model of endometrial cancer. J Cell Physiol. 2006;208(2):255–266. doi:10.1002/(ISSN)1097-465216688764
  • MohantyAK, SinghG, ParamasivamM, et al. Crystal structure of a novel regulatory 40-kDa mammary gland protein (MGP-40) secreted during involution. J Biol Chem. 2003;278(16):14451–14460. doi:10.1074/jbc.M20896720012529329
  • RingsholtM, EVSH, JohansenJS, PricePA, ChristentsenLH. YKL-40 protein expression in normal adult human tissues–an immunohistochemical study. J Mol Histol. 2007;38(1):33–43. doi:10.1007/s10735-006-9075-017242979
  • NyirkosP, GoldsEE. Human synovial cells secrete a 39 kDa protein similar to a bovine mammary protein expressed during the non-lactating period. Biochem J. 1990;269(1):265–268. doi:10.1042/bj26902652375755
  • OtsukaK, MatsumotoH, NiimiA, et al. Sputum YKL-40 levels and pathophysiology of asthma and chronic obstructive pulmonary disease. Respir Int Rev Thorac Dis. 2012;83(6):507–519.
  • SpecjalskiK, ChełmińskaM, JassemE. YKL-40 protein correlates with the phenotype of asthma. Lung. 2015;193(2):189–194. doi:10.1007/s00408-015-9693-y25663327
  • JohansenJS, JensenHS, PricePA. A new biochemical marker for joint injury. Analysis of YKL-40 in serum and synovial fluid. Br J Rheumatol. 1993;32(11):949–955. doi:10.1093/rheumatology/32.11.9498220933
  • RathckeCN, VestergaardH. YKL-40, a new inflammatory marker with relation to insulin resistance and with a role in endothelial dysfunction and atherosclerosis. Inflamm Res. 2006;55(6):221–227.16955240
  • SpoorenbergSMC, VestjensSMT, RijkersGT, et al. YKL-40, CCL18 and SP-D predict mortality in patients hospitalized with community-acquired pneumonia. Respirol Carlton Vic. 2017;22(3):542–550. doi:10.1111/resp.12924
  • KzhyshkowskaJ, YinS, LiuT, RiabovV, MitrofanovaI. Role of chitinase-like proteins in cancer. Biol Chem. 2016;397(3):231–247. doi:10.1515/hsz-2015-026926733160
  • VindI, JohansenJS, PricePA, MunkholmP. Serum YKL-40, a potential new marker of disease activity in patients with inflammatory bowel disease. Scand J Gastroenterol. 2003;38(6):599–605. doi:10.1080/0036552031000053712825867
  • NøjgaardC, JohansenJS, ChristensenE, et al. Serum levels of YKL-40 and PIIINP as prognostic markers in patients with alcoholic liver disease. J Hepatol. 2003;39(2):179–186. doi:10.1016/S0168-8278(03)00184-312873813
  • Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention; 2019.
  • Hekking-P-PW, WenerRR, AmelinkM, ZwindermanAH, BouvyML, BelEH. The prevalence of severe refractory asthma. J Allergy Clin Immunol. 2015;135(4):896–902. doi:10.1016/j.jaci.2014.08.04225441637
  • LarssonK, StällbergB, LisspersK, et al. Prevalence and management of severe asthma in primary care: an observational cohort study in Sweden (PACEHR). Respir Res. 2018;19(1):12. doi:10.1186/s12931-018-0719-x29347939
  • AntonicelliL, BuccaC, NeriM, et al. Asthma severity and medical resource utilisation. Eur Respir J. 2004;23(5):723–729. doi:10.1183/09031936.04.0000490415176687
  • WenzelS. Severe asthma: from characteristics to phenotypes to endotypes. Clin Exp Allergy. 2012;42(5):650–658. doi:10.1111/j.1365-2222.2011.03929.x22251060
  • CartierA, LehrerSB, Horth-SusinL, et al. Prevalence of crab asthma in crab plant workers in Newfoundland and Labrador. Int J Circumpolar Health. 2004;63(2):333–336. doi:10.3402/ijch.v63i0.1793015736679
  • TanakaH, SaikaiT, SugawaraH, et al. Workplace-related chronic cough on a mushroom farm. Chest. 2002;122(3):1080–1085. doi:10.1378/chest.122.3.108012226058
  • BrinchmannBC, BayatM, BrøggerT, MuttuveluDV, TjønnelandA, SigsgaardT. A possible role of chitin in the pathogenesis of asthma and allergy. Ann Agric Environ Med. 2011;18(1):7–12.21736263
  • LloydCM, HesselEM. Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol. 2010;10(12):838–848. doi:10.1038/nri287021060320
  • JamesAJ, ReiniusLE, VerhoekM, et al. Increased YKL-40 and chitotriosidase in asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2016;193(2):131–142. doi:10.1164/rccm.201504-0760OC26372680
  • KonradsenJR, JamesA, NordlundB, et al. The chitinase-like protein YKL-40: a possible biomarker of inflammation and airway remodeling in severe pediatric asthma. J Allergy Clin Immunol. 2013;132(2):328–335. doi:10.1016/j.jaci.2013.03.00323628340
  • LeeJH, ParkKH, ParkJW, HongCS. YKL-40 in induced sputum after allergen bronchial provocation in atopic asthma. J Investig Allergol Clin Immunol. 2012;22(7):501–507.
  • BaraI, OzierA, GirodetP-O, et al. Role of YKL-40 in bronchial smooth muscle remodeling in asthma. Am J Respir Crit Care Med. 2012;185(7):715–722. doi:10.1164/rccm.201105-0915OC22281830
  • ShenC-R, Juang-H-H, ChenH-S, et al. The correlation between chitin and acidic mammalian chitinase in animal models of allergic Asthma. Int J Mol Sci. 2015;16(11):27371–27377. doi:10.3390/ijms16112603326580611
  • NikotaJK, BotelhoFM, BauerCM, et al. Differential expression and function of breast regression protein 39 (BRP-39) in murine models of subacute cigarette smoke exposure and allergic airway inflammation. Respir Res. 2011;12:39. doi:10.1186/1465-9921-12-3921473774
  • MazurM, OlczakJ, OlejniczakS, et al. Targeting acidic mammalian chitinase is effective in animal model of asthma. J Med Chem. 2018;61(3):695–710. doi:10.1021/acs.jmedchem.7b0105129283260
  • SutherlandTE, AndersenOA, BetouM, et al. Analyzing airway inflammation with chemical biology: dissection of acidic mammalian chitinase function with a selective drug-like inhibitor. Chem Biol. 2011;18(5):569–579. doi:10.1016/j.chembiol.2011.02.01721609838
  • HongJY, KimM, SolIS, et al. Chitotriosidase inhibits allergic asthmatic airways via regulation of TGF-β expression and Foxp3+ Treg cells. Allergy. 2018;73(8):1686–1699. doi:10.1111/all.2018.73.issue-829420850
  • LeeCG, HartlD, LeeGR, et al. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J Exp Med. 2009;206(5):1149–1166. doi:10.1084/jem.2008127119414556
  • BierbaumS, NickelR, KochA, et al. Polymorphisms and haplotypes of acid mammalian chitinase are associated with bronchial asthma. Am J Respir Crit Care Med. 2005;172(12):1505–1509. doi:10.1164/rccm.200506-890OC16179638
  • BierbaumS, Superti-FurgaA, HeinzmannA. Genetic polymorphisms of chitotriosidase in Caucasian children with bronchial asthma. Int J Immunogenet. 2006;33(3):201–204. doi:10.1111/eji.2006.33.issue-316712652
  • VicencioAG, ChuppGL, TsirilakisK, et al. CHIT1 mutations: genetic risk factor for severe asthma with fungal sensitization? Pediatrics. 2010;126(4):e982–e985. doi:10.1542/peds.2010-032120819891
  • GoldmanDL, LiX, TsirilakisK, AndradeC, CasadevallA, VicencioAG. Increased chitinase expression and fungal-specific antibodies in the bronchoalveolar lavage fluid of asthmatic children. Clin Exp Allergy. 2012;42(4):523–530. doi:10.1111/j.1365-2222.2011.03886.x22092749
  • SantosCB, DavidsonJ, CovarRA, et al. The chitinase-like protein YKL-40 is not a useful biomarker for severe persistent asthma in children. Ann Allergy Asthma Immunol. 2014;113(3):263–266. doi:10.1016/j.anai.2014.05.02424954373
  • LaiT, ChenM, DengZ, et al. YKL-40 is correlated with FEV1 and the asthma control test (ACT) in asthmatic patients: influence of treatment. BMC Pulm Med. 2015;15:1. doi:10.1186/1471-2466-15-125578181
  • GomezJL, YanX, HolmCT, et al. Characterisation of asthma subgroups associated with circulating YKL-40 levels. Eur Respir J. 2017;50(4):1700800. doi:10.1183/13993003.00800-201729025889
  • SabaM, SharifMR, AkbariH, NikoueinejadH, Ramazani JolfaiiM. YKL-40 in asthma and its correlation with different clinical parameters. Iran J Allergy Asthma Immunol. 2014;13(4):271–277.24659163
  • ChuppGL, LeeCG, JarjourN, et al. A chitinase-like protein in the lung and circulation of patients with severe asthma. N Engl J Med. 2007;357(20):2016–2027. doi:10.1056/NEJMoa07360018003958
  • AhangariF, SoodA, MaB, et al. Chitinase 3-like-1 regulates both visceral fat accumulation and asthma-like Th2 inflammation. Am J Respir Crit Care Med. 2015;191(7):746–757. doi:10.1164/rccm.201405-0796OC25629580
  • JamesA, Stenberg HammarK, ReiniusL, et al. A longitudinal assessment of circulating YKL-40 levels in preschool children with wheeze. Pediatr Allergy Immunol. 2017;28(1):79–85. doi:10.1111/pai.2017.28.issue-127732738
  • HinksTSC, BrownT, LauLCK, et al. Multidimensional endotyping in patients with severe asthma reveals inflammatory heterogeneity in matrix metalloproteinases and chitinase 3-like protein 1. J Allergy Clin Immunol. 2016;138(1):61–75. doi:10.1016/j.jaci.2015.11.02026851968
  • TangH, SunY, ShiZ, et al. YKL-40 induces IL-8 expression from bronchial epithelium via MAPK (JNK and ERK) and NF-κB pathways, causing bronchial smooth muscle proliferation and migration. J Immunol. 2013;190(1):438–446. doi:10.4049/jimmunol.120182723197259
  • LouisR, LauLC, BronAO, RoldaanAC, RadermeckerM. Djukanović R The relationship between airways inflammation and asthma severity. Am J Respir Crit Care Med. 2000;161(1):9–16. doi:10.1164/ajrccm.161.1.980204810619791
  • FukakusaM, BergeronC, TulicMK, et al. Corticosteroids decrease eosinophil and CC chemokine expression but increase neutrophil, IL-8, and IFN-gamma-inducible protein 10 expression in asthmatic airway mucosa. J Allergy Clin Immunol. 2005;115(2):280–286. doi:10.1016/j.jaci.2004.10.03615696082
  • RayA, KollsJK. Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol. 2017;38(12):942–954. doi:10.1016/j.it.2017.07.00328784414
  • HuntJF, FangK, MalikR, et al. Endogenous airway acidification. Implications for asthma pathophysiology. Am J Respir Crit Care Med. 2000;161(3):694–699. doi:10.1164/ajrccm.161.3.991100510712309
  • TesseR, FioreF, SillecchiaO, et al. Effects of inhaled corticosteroids on exhaled breath condensate (EBC) pH and cytokines levels in children with asthma and atopic dermatitis (AD). J Allergy Clin Immunol. 2006;117(2):S281. doi:10.1016/j.jaci.2005.12.1163
  • OkawaK, OhnoM, KashimuraA, et al. Loss and gain of human acidic mammalian chitinase activity by nonsynonymous SNPs. Mol Biol Evol. 2016;33(12):3183–3193. doi:10.1093/molbev/msw19827702777
  • VosT, FlaxmanAD, NaghaviM, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–2196. doi:10.1016/S0140-6736(12)61729-223245607
  • World Health Organization. Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2016. Geneva: World Health Organization; 2018.
  • VerweijPE, KerremansJJ, VossA, MeisJF. Fungal contamination of tobacco and Marijuana. JAMA. 2000;284(22):2875. doi:10.1001/jama.284.22.286911147983
  • LétuvéS, KozhichA, AroucheN, et al. YKL-40 is elevated in patients with chronic obstructive pulmonary disease and activates alveolar macrophages. J Immunol. 2008;181(7):5167–5173. doi:10.4049/jimmunol.181.7.516718802121
  • MatsuuraH, HartlD, KangM-J, et al. Role of breast regression protein-39 in the pathogenesis of cigarette smoke-induced inflammation and emphysema. Am J Respir Cell Mol Biol. 2011;44(6):777–786. doi:10.1165/rcmb.2010-0081OC20656949
  • GuerraS, HalonenM, SherrillDL, et al. The relation of circulating YKL-40 to levels and decline of lung function in adult life. Respir Med. 2013;107(12):1923–1930. doi:10.1016/j.rmed.2013.07.01323920328
  • MajewskiS, TworekD, SzewczykK, et al. Overexpression of chitotriosidase and YKL-40 in peripheral blood and sputum of healthy smokers and patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2019;14:1611–1631.31413557
  • LaiT, WuD, ChenM, et al. YKL-40 expression in chronic obstructive pulmonary disease: relation to acute exacerbations and airway remodeling. Respir Res. 2016;17:31. doi:10.1186/s12931-016-0338-327013031
  • van EijkM, van RoomenCPAA, RenkemaGH, et al. Characterization of human phagocyte-derived chitotriosidase, a component of innate immunity. Int Immunol. 2005;17(11):1505–1512. doi:10.1093/intimm/dxh32816214810
  • van EijkM, ScheijSS, van RoomenCP, SpeijerD, BootRG, AertsJM. TLR- and NOD2-dependent regulation of human phagocyte-specific chitotriosidase. FEBS Lett. 2007;581(28):5389–5395. doi:10.1016/j.febslet.2007.10.03917976376
  • MalaguarneraL, MusumeciM, Di RosaM, ScutoA, MusumeciS. Interferon-gamma, tumor necrosis factor-alpha, and lipopolysaccharide promote chitotriosidase gene expression in human macrophages. J Clin Lab Anal. 2005;19(3):128–132. doi:10.1002/(ISSN)1098-282515900564
  • ChoSJ, WeidenMD, LeeCG. Chitotriosidase in the pathogenesis of inflammation, interstitial lung diseases and COPD. Allergy Asthma Immunol Res. 2015;7(1):14–21. doi:10.4168/aair.2015.7.1.1425553258
  • LeeCM, HeCH, ParkJW, et al. Chitinase 1 regulates pulmonary fibrosis by modulating TGF-β/SMAD7 pathway via TGFBRAP1 and FOXO3. Life Sci Alliance. 2019;2(3):e201900350.31085559
  • LeeCG, HerzogEL, AhangariF, et al. Chitinase 1 is a biomarker for and therapeutic target in scleroderma-associated interstitial lung disease that augments TGF-β1 signaling. J Immunol. 2012;189(5):2635–2644. doi:10.4049/jimmunol.120111522826322
  • LeeCG, HomerRJ, ZhuZ, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med. 2001;194(6):809–821. doi:10.1084/jem.194.6.80911560996
  • SakazakiY, HoshinoT, TakeiS, et al. Overexpression of chitinase 3-like 1/YKL-40 in lung-specific IL-18-transgenic mice, smokers and COPD. PLoS One. 2011;6(9):e24177. doi:10.1371/journal.pone.002417721915293
  • KangMJ, YoonCM, NamM, et al. Role of chitinase 3-Like-1 in Interleukin-18-induced pulmonary type 1, type 2, and type 17 inflammation; alveolar destruction; and airway fibrosis in the murine lung. Am J Respir Cell Mol Biol. 2015;53(6):863–871. doi:10.1165/rcmb.2014-0366OC25955511
  • KangMJ, HomerRJ, GalloA, et al. IL-18 is induced and IL-18 receptor alpha plays a critical role in the pathogenesis of cigarette smoke-induced pulmonary emphysema and inflammation. J Immunol. 2007;178(3):1948–1959. doi:10.4049/jimmunol.178.3.194817237446
  • GumusA, KayhanS, CinarkaH, et al. High serum YKL-40 level in patients with COPD is related to hypoxemia and disease severity. Tohoku J Exp Med. 2013;29(2):163–170. doi:10.1620/tjem.229.163
  • AminuddinF, AkhabirL, StefanowiczD, et al. Genetic association between human chitinases and lung function in COPD. Hum Genet. 2012;131(7):1105–1114. doi:10.1007/s00439-011-1127-122200767
  • ChoSJ, NolanA, EchevarriaGC, et al. Chitotriosidase is a biomarker for the resistance to World Trade Center lung injury in New York City firefighters. J Clin Immunol. 2013;33(6):1134–1142. doi:10.1007/s10875-013-9913-223744081
  • BojesenSE, JohansenJS, NordestgaardBG. Plasma YKL-40 levels in healthy subjects from the general population. Clin Chim Acta. 2011;412(9–10):709–712. doi:10.1016/j.cca.2011.01.02221272568
  • KurtI, AbasliD, CihanM, et al. Chitotriosidase levels in healthy elderly subjects. Ann N Y Acad Sci. 2007;1100:185–188. doi:10.1196/annals.1395.01717460177
  • ChatterjeeR, BatraJ, DasS, SharmaSK, GhoshB. Genetic association of acidic mammalian chitinase with atopic asthma and serum total IgE levels. J Allergy Clin Immunol. 2008;122(1):202–208. doi:10.1016/j.jaci.2008.04.03018602573
  • OberC, TanZ, SunY, et al. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med. 2008;358(16):1682–1691. doi:10.1056/NEJMoa070880118403759
  • WuAC, Lasky-SuJ, RogersCA, KlandermanBJ, LitonjuaA. Polymorphisms of chitinases are not associated with asthma. J Allergy Clin Immunol. 2010;125(3):754–757. doi:10.1016/j.jaci.2009.12.99520226308
  • JohansenJS, StoltenbergM, HansenM, et al. Serum YKL-40 concentrations in patients with rheumatoid arthritis: relation to disease activity. Rheumatol Oxf Engl. 1999;38(7):618–626. doi:10.1093/rheumatology/38.7.618
  • KunzLIZ, Van’t WoutEFA, van SchadewijkA, et al. Regulation of YKL-40 expression by corticosteroids: effect on pro-inflammatory macrophages in vitro and its modulation in COPD in vivo. Respir Res. 2015;16:154. doi:10.1186/s12931-015-0314-326696093
  • FalcozC, OliverR, McDowallJE, VentrescaP, ByeA, Daley-YatesPT. Bioavailability of orally administered micronised fluticasone propionate. Clin Pharmacokinet. 2000;39(1):9–15. doi:10.2165/00003088-200039001-0000211140434
  • CulpittSV, RogersDF, ShahP, et al. Impaired inhibition by dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;167(1):24–31. doi:10.1164/rccm.200204-298OC12406856
  • AgapovE, BattaileJT, TidwellR, et al. Macrophage chitinase 1 stratifies chronic obstructive lung disease. Am J Respir Cell Mol Biol. 2009;41(4):379–384. doi:10.1165/2009-0122R19491341
  • RaoFV, AndersenOA, VoraKA, DemartinoJA, van AaltenDM. Methylxanthine drugs are chitinase inhibitors: investigation of inhibition and binding modes. Chem Biol. 2005;12(9):973–980. doi:10.1016/j.chembiol.2005.07.00916183021
  • MatsumotoT, InoueH, SatoY, et al. Demethylallosamidin, a chitinase inhibitor, suppresses airway inflammation and hyperresponsiveness. Biochem Biophys Res Commun. 2009;390(1):103–108. doi:10.1016/j.bbrc.2009.09.07519782048
  • MazurM, BartoszewiczA, DymekB, et al. Discovery of selective, orally bioavailable inhibitor of mouse chitotriosidase. Bioorg Med Chem Lett. 2018;28(3):310–314. doi:10.1016/j.bmcl.2017.12.04729292229