121
Views
13
CrossRef citations to date
0
Altmetric
Original Research

Proteome Profiling of Lung Tissues in Chronic Obstructive Pulmonary Disease (COPD): Platelet and Macrophage Dysfunction Contribute to the Pathogenesis of COPD

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 973-980 | Published online: 05 May 2020

References

  • WangC, XuJ, YangL, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet. 2018;391(10131):1706–1717. doi:10.1016/S0140-6736(18)30841-929650248
  • VosT, AllenC, AroraM; Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545–1602. doi:10.1016/S0140-6736(16)31678-627733282
  • AgustiA, HoggJC. Update on the pathogenesis of chronic obstructive pulmonary disease. N Engl J Med. 2019;381(13):1248–1256. doi:10.1056/NEJMra190047531553836
  • TaylorAE, Finney-HaywardTK, QuintJK, et al. Defective macrophage phagocytosis of bacteria in COPD. Eur Respir J. 2010;35(5):1039–1047. doi:10.1183/09031936.0003670919897561
  • CosioMG, SaettaM, AgustiA. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med. 2009;360(23):2445–2454. doi:10.1056/NEJMra080475219494220
  • ZhuH, SnyderM. ‘Omic’ approaches for unraveling signaling networks. Curr Opin Cell Biol. 2002;14(2):173–179. doi:10.1016/S0955-0674(02)00315-011891116
  • SunC, ZhouTY, XieGQ, et al. Proteomics of exhaled breath condensate in stable COPD and non-COPD controls using tandem mass tags (TMTs) quantitative mass spectrometry: a pilot study. J Proteomics. 2019;206:103392.31129269
  • XuB, GaoY, ZhanS, et al. Quantitative protein profiling of hippocampus during human aging. Neurobiol Aging. 2016;39:46–56. doi:10.1016/j.neurobiolaging.2015.11.02926923401
  • XuB, XiongF, TianR, et al. Temporal lobe in human aging: a quantitative protein profiling study of samples from Chinese Human Brain Bank. Exp Gerontol. 2016;73:31–41. doi:10.1016/j.exger.2015.11.01626631761
  • WangX, LiuY, JiaY, et al. Proteome profiling of cerebral vessels in Rhesus Macaques: dysregulation of antioxidant activity and extracellular matrix proteins contributes to cerebrovascular aging in Rhesus Macaques. Front Aging Neurosci. 2019;11:293. doi:10.3389/fnagi.2019.0029331708766
  • van UlsenP, KuhnK, PrinzT, et al. Identification of proteins of Neisseria meningitidis induced under iron-limiting conditions using the isobaric tandem mass tag (TMT) labeling approach. Proteomics. 2009;9(7):1771–1781. doi:10.1002/pmic.20080064219288525
  • BaderGD, HogueCW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4:2. doi:10.1186/1471-2105-4-212525261
  • MaJ, ChenT, WuS, et al. iProX: an integrated proteome resource. Nucleic Acids Res. 2019;47(D1):D1211–D1217. doi:10.1093/nar/gky86930252093
  • KumarV, AbbasAK, FaustoN, RobbinsSL, CotranRS. Robbins and Cotran Pathologic Basis of Disease. 7th ed. Philadelphia: Elsevier Saunders; 2005.
  • HoggJC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet. 2004;364(9435):709–721. doi:10.1016/S0140-6736(04)16900-615325838
  • Jandrot-PerrusM, BusfieldS, LagrueAH, et al. Cloning, characterization, and functional studies of human and mouse glycoprotein VI: a platelet-specific collagen receptor from the immunoglobulin superfamily. Blood. 2000;96(5):1798–1807. doi:10.1182/blood.V96.5.179810961879
  • GuptaSK, HasselT, SinghJP. A potent inhibitor of endothelial-cell proliferation is generated by proteolytic cleavage of the chemokine platelet factor-4. Proc Natl Acad Sci U S A. 1995;92(17):7799–7803. doi:10.1073/pnas.92.17.77997644496
  • ChenH, HerndonME, LawlerJ. The cell biology of thrombospondin-1. Matrix Biol. 2000;19(7):597–614. doi:10.1016/S0945-053X(00)00107-411102749
  • BelchamberKBR, DonnellyLE. Macrophage dysfunction in respiratory disease. Results Probl Cell Differ. 2017;62:299–313.28455714
  • KirkhamPA, SpoonerG, RahmanI, RossiAG. Macrophage phagocytosis of apoptotic neutrophils is compromised by matrix proteins modified by cigarette smoke and lipid peroxidation products. Biochem Biophys Res Commun. 2004;318(1):32–37. doi:10.1016/j.bbrc.2004.04.00315110749
  • HodgeS, HodgeG, AhernJ, JersmannH, HolmesM, ReynoldsPN. Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2007;37(6):748–755. doi:10.1165/rcmb.2007-0025OC17630319
  • HodgeS, HodgeG, HolmesM, ReynoldsPN. Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation. Eur Respir J. 2005;25(3):447–454. doi:10.1183/09031936.05.0007760415738287
  • KristiansenM, GraversenJH, JacobsenC, et al. Identification of the haemoglobin scavenger receptor. Nature. 2001;409(6817):198–201. doi:10.1038/3505159411196644
  • AbdullahM, KahlerD, VockC, et al. Pulmonary haptoglobin and CD163 are functional immunoregulatory elements in the human lung. Respiration. 2012;83(1):61–73. doi:10.1159/00032986821860221
  • BinLH, NielsonLD, LiuXQ, MasonRJ, ShuHB. Identification of uteroglobin-related protein 1 and macrophage scavenger receptor with collagenous structure as a lung-specific ligand-receptor pair. J Immunol. 2003;171(2):924–930. doi:10.4049/jimmunol.171.2.92412847263
  • BaqirM, ChenCZ, MartinRJ, et al. Cigarette smoke decreases MARCO expression in macrophages: implication in Mycoplasma pneumoniae infection. Respir Med. 2008;102(11):1604–1610. doi:10.1016/j.rmed.2008.05.00218590957
  • DahlM, BauerAK, ArredouaniM, et al. Protection against inhaled oxidants through scavenging of oxidized lipids by macrophage receptors MARCO and SR-AI/II. J Clin Invest. 2007;117(3):757–764. doi:10.1172/JCI2996817332894
  • VogtL, SchmitzN, KurrerMO, et al. VSIG4, a B7 family-related protein, is a negative regulator of T cell activation. J Clin Invest. 2006;116(10):2817–2826. doi:10.1172/JCI2567317016562
  • LiJ, DiaoB, GuoS, et al. VSIG4 inhibits proinflammatory macrophage activation by reprogramming mitochondrial pyruvate metabolism. Nat Commun. 2017;8(1):1322. doi:10.1038/s41467-017-01327-429109438
  • HelmyKY, KatschkeKJ, GorganiNN, et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell. 2006;124(5):915–927. doi:10.1016/j.cell.2005.12.03916530040
  • HodgeS, HodgeG, ScicchitanoR, ReynoldsPN, HolmesM. Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol Cell Biol. 2003;81(4):289–296. doi:10.1046/j.1440-1711.2003.t01-1-01170.x12848850