193
Views
15
CrossRef citations to date
0
Altmetric
Review

The Role of Toll-Like Receptors 2 and 4 in the Pathogenesis of Chronic Obstructive Pulmonary Disease

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1481-1493 | Published online: 23 Jun 2020

References

  • BarnesPJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci. 2017;131(13):1541–1558. doi:10.1042/CS2016048728659395
  • VitkinaTI, DenisenkoYK, DavydovaKA. The changes in the profile of cytokines in progressing chronic obstructive pulmonary disease. Int Res J. 2016;49(7–3):6–8. doi:10.18454/IRJ.2016.49.024
  • De NardoD. Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine. 2015;74(2):181–189. doi:10.1016/j.cyto.2015.02.02525846205
  • MortazE, AdcockIM, ItoK, KraneveldAD, NijkampFP, FolkertsG. Cigarette smoke induces CXCL8 production by human neutrophils via activation of TLR9 receptor. Eur Respir J. 2010;36(5):1143–1154. doi:10.1183/09031936.0006220919840968
  • KoaraiA, YanagisawaS, SugiuraH, et al. Cigarette smoking augments toll-like receptor 3 expression and responses in macrophages. Eur Respir J. 2011;38(Suppl 55):218.21719499
  • NadigelJ, PrefontaineD, BagloleCJ, et al. Cigarette smoke increases TLR4 and TLR9 expression and induces cytokine production from CD8+T cells in chronic obstructive pulmonary disease. Respir Res. 2011;12(1):149. doi:10.1186/1465-9921-12-14922070100
  • FreemanCM, MartinezFJ, HanMK, et al. Lung CD8+ T cells in COPD have increased expression of bacterial TLRs. Respir Res. 2013;14(1):13. doi:10.1186/1465-9921-14-1323374856
  • PomerenkeA, LeaSR, HerrickS, LindsayMA, SinghD. Characterization of TLR-induced inflammatory responses in COPD and control lung tissue explants. Int J Chron Obstruct Pulmon Dis. 2016;11:2409–2417. doi:10.2147/COPD.S10515627729782
  • Gimenes-JuniorJ, OwuarN, VariHR, et al. FOXO3a regulates rhinovirus-induced innate immune responses in airway epithelial cells. Sci Rep. 2019;9:18180. doi:10.1038/s41598-019-54567-331796819
  • BainesKJ, SimpsonJL, GibsonPG, HartlD. Innate immune responses are increased in chronic obstructive pulmonary disease. PLoS One. 2011;6(3):e18426. doi:10.1371/journal.pone.001842621483784
  • ZuoL, LucasK, FortunaCA, Chuang-C-C, BestTM. Molecular regulation of toll-like receptors in asthma and COPD. Front Physiol. 2015;6:312. doi:10.3389/fphys.2015.0031226617525
  • HansbroPM, HawTJ, StarkeyMR, MiyakeK. Toll-like receptors in COPD. Eur Respir J. 2017;49(5):1700739. doi:10.1183/13993003.00739-201728536254
  • McGrathJJC, StampfliMR. The immune system as a victim and aggressor in chronic obstructive pulmonary disease. J Thorac Dis. 2018;10(Suppl 17):S2011–S2017. doi:10.21037/jtd.2018.05.6330023106
  • BrusselleGG, JoosGF, BrackeKR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 2011;378(9795):1015–1026. doi:10.1016/S0140-6736(11)60988-421907865
  • BauerRN, Diaz-SanchezD, JaspersI. Effects of air pollutants on innate immunity: the role of toll-like receptors and nucleotide-binding oligomerization domain–like receptors. J Allergy Clin Immunol. 2012;129(1):14–24. doi:10.1016/j.jaci.2011.11.00422196521
  • BezemerGFG, SagarS, van BergenhenegouwenJ, et al. Dual role of toll-like receptors in asthma and chronic obstructive pulmonary disease. Pharmacol Rev. 2012;64(2):337–358. doi:10.1124/pr.111.00462222407613
  • OlloquequiJ, SilvaOR. Biomass smoke as a risk factor for chronic obstructive pulmonary disease: effects on innate immunity. Innate Immun. 2016;22(5):373–381. doi:10.1177/175342591665027227226464
  • SilvaR, OyarzúnM, OlloquequiJ. Pathogenic mechanisms in chronic obstructive pulmonary disease due to biomass smoke exposure. Arch Bronconeumol (English Ed). 2015;51(6):285–292. doi:10.1016/j.arbr.2015.04.013
  • PaceE, FerraroM, SienaL, et al. Cigarette smoke increases toll‐like receptor 4 and modifies lipopolysaccharide‐mediated responses in airway epithelial cells. Immunology. 2008;124(3):401–411. doi:10.1111/j.1365-2567.2007.02788.x18217953
  • AnCH, WangXM, LamHC, et al. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol. 2012;303(9):L748–L757. doi:10.1152/ajplung.00102.201222983353
  • HawTJ, StarkeyMR, PavlidisS, et al. Toll-like receptor 2 and 4 have opposing roles in the pathogenesis of cigarette smoke-induced chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2018;314:L298–L317. doi:10.1152/ajplung.00154.201729025711
  • LeeSW, KimDR, KimTJ, et al. The association of downregulated toll-like receptor 4 expression with airflow limitation and emphysema in smokers. Respir Res. 2012;13:106. doi:10.1186/1465-9921-13-10623170858
  • Hulina-TomaskovicA, HeijinIH, JonkerM, Somborac-BacuraA, RajkovicMG, RumoraL. Pro-inflammatory effects of extracellular Hsp70 and cigarette smoke in primary airway epithelial cells from COPD patients. Biochimie. 2019;156:47–58. doi:10.1016/j.biochi.2018.09.01030268700
  • SussanTE, IngoleV, KimJH, et al. Source of biomass cooking fuel determines pulmonary response to household air pollution. Am J Respir Cell Mol Biol. 2014;50(3):538–548. doi:10.1165/rcmb.2013-0201OC24102120
  • BeckerS, MundandharaS, DevlinRB, MaddenM. Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: further mechanistic studies. Toxicol Appl Pharmacol. 2005;207(2):269–275. doi:10.1016/j.taap.2005.01.02315993911
  • ShoenfeltJ, MitkusRJ, ZeislerR, et al. Involvement of TLR2 and TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate matter. J Leukoc Biol. 2009;86(2):303–312. doi:10.1189/jlb.100858719406832
  • BudulacSE, BoezenHM, HiemstraPS, et al. Toll-like receptor (TLR2 and TLR4) polymorphisms and chronic obstructive pulmonary disease. PLoS One. 2012;7(8):e43124. doi:10.1371/journal.pone.004312422952638
  • ApostolouA, KerenidiT, MichopoulosA, et al. Association between TLR2/TLR4 gene polymorphisms and COPD phenotype in a Greek cohort. Herz. 2017;42:752–757. doi:10.1007/s00059-016-4510-927909766
  • LiZ, MaoX, LiuQ, et al. Functional variations of the TLR4 gene in association with chronic obstructive pulmonary disease and pulmonary tuberculosis. BMC Pulm Med. 2019;19(1):184. doi:10.1186/s12890-019-0939-y31640653
  • D’AnnaSE, BalbiB, CappelloF, CaroneM, Di StefanoA. Bacterial–viral load and the immune response in stable and exacerbated COPD: significance and therapeutic prospects. Int J Chron Obstruct Pulmon Dis. 2016;11:445–453. doi:10.2147/COPD.S9339827042037
  • PaceE, FerraroM, GiarratanoA, et al. TLR4 up-regulation and reduced Foxp3 expression in mechanically ventilated smokers with obstructive chronic bronchitis. COPD: J Chron Obstruct Pulmon Dis. 2013;10(2):147–155. doi:10.3109/15412555.2012.730565
  • Di StefanoA, RicciardoloFLM, CaramoriG, et al. Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression. Eur Respir J. 2017;49(5):1602006. doi:10.1183/13993003.02006-201628536249
  • AmatngalimGD, SchrumpfJA, HenicA, et al. Antibacterial defense of human airway epithelial cells from chronic obstructive pulmonary disease patients induced by acute exposure to nontypeable Haemophilus influenzae: modulation by cigarette smoke. J Innate Immun. 2017;9:359–374. doi:10.1159/00045519328171878
  • ChenY, KumarRK, ThomasPS, HerbertC. Th1/17-biased inflammatory environment associated with COPD alters the response of airway epithelial cells to viral and bacterial stimuli. Mediators Inflamm. 2019;2019:1–12. doi:10.1155/2019/7281462
  • BerensonCS, KruzelRL, EberhardtE, et al. Impaired innate immune alveolar macrophage response and the predilection for COPD exacerbations. Thorax. 2014;69(9):811–818. doi:10.1136/thoraxjnl-2013-20366924686454
  • LeaSR, ReynoldsSL, KaurM, et al. The effects of repeated toll-like receptors 2 and 4 stimulation in COPD alveolar macrophages. Int J Chron Obstruct Pulmon Dis. 2018;13:771–780. doi:10.2147/COPD.S9707129535517
  • KnoblochJ, HagH, JungckD, UrbanK, KochA. Resveratrol impairs the release of steroid resistant cytokines from bacterial endotoxin exposed alveolar macrophages in chronic obstructive pulmonary disease. Basic Clin Pharmacol Toxicol. 2011;109(2):138–143. doi:10.1111/j.1742-7843.2011.00707.x21447053
  • VitkinaTI, SidletskayaKA, DenisenkoYK. Сytokine response and CD14+CD282+ cells in non-smokers with chronic obstructive pulmonary disease. Respirology. 2019;24(Suppl2):110. doi:10.1111/resp.13700_39
  • FanVS, GharibSA, MartinTR, WurfelMM. COPD disease severity and innate immune response to pathogen-associated molecular patterns. Int J Chron Obstruct Pulmon Dis. 2016;11:467–477. doi:10.2147/COPD.S9441027019597
  • AllardB, PanaritiA, PernetE, et al. Tolerogenic signaling of alveolar macrophages induces lung adaptation to oxidative injury. J Allergy Clin Immunol. 2019;144(4):945–961. doi:10.1016/j.jaci.2019.07.01531356919
  • MetcalfeHJ, LeaS, HughesD, KhalafR, Abbott‐BannerK, SinghD. Effects of cigarette smoke on Toll‐like receptor (TLR) activation of chronic obstructive pulmonary disease (COPD) macrophages. Clin Expl Immunol. 2014;176(3):461–472. doi:10.1111/cei.12289
  • KnoblochJ, PanekS, YanikSD, et al. The monocyte-dependent immune response to bacteria is suppressed in smoking-induced COPD. J Mol Med. 2019;97(6):817–828. doi:10.1007/s00109-019-01778-w30929031
  • PonsJ, SauledaJ, RegueiroV, et al. Expression of toll-like receptor 2 is up-regulated in monocytes from patients with chronic obstructive pulmonary disease. Respir Res. 2006;7(1):64. doi:10.1186/1465-9921-7-6416606450
  • TripathiPM, KantS, YadavRS, et al. Expression of toll-like receptor 2 and 4 in peripheral blood neutrophil cells from patients with chronic obstructive pulmonary disease. Oman Med J. 2017;32(6):477–485. doi:10.5001/omj.2017.9229218124
  • von ScheeleI, LarssonK, DahlenB, et al. Toll-like receptor expression in smokers with and without COPD. Respir Med. 2011;105(8):1222–1230. doi:10.1016/j.rmed.2011.02.01221439805
  • UlutasGS, AlpaydınAO, TaneliF, et al. Toll-like receptor 2 expression and peripheral blood CD4+/CD8+ T cell ratio in COPD. Turk Thorac J. 2014;15(3):106–111. doi:10.5152/ttd.2014.3842
  • CosmiL, LiottaF, AnnunziatoF. Th17 regulating lower airway disease. Curr Opin Allergy Clin Immunol. 2016;16(1):1–6. doi:10.1097/ACI.000000000000022726600259
  • KalininaEP, VitkinaTI, KnyshovVV, FedoseyevEA, NovgorodtsevaTP, GvozdenkoTA. Clinical and immunological comparisons in Th-dependent immune response mechanisms among patients with chronic obstructive pulmonary disease. Med Immunol. 2018;20(6):855–864. doi:10.15789/1563-0625-2018-6-855-864
  • WangH, YingH, WangS, et al. Imbalance of peripheral blood Th17 and treg responses in patients with chronic obstructive pulmonary disease. Clin Respir J. 2015;9:330–341. doi:10.1111/crj.1214724720797
  • LiH, LiuQ, JiangY, ZhangY, XiaoW, ZhangY. Disruption of th17/treg balance in the sputum of patients with chronic obstructive pulmonary disease. Am J Med Sci. 2015;349(5):392–397. doi:10.1097/MAJ.000000000000044725782336
  • ItoJT, CervilhaDAB, LourençoJD, et al. Th17/treg imbalance in COPD progression: a temporal analysis using a CS-induced model. PLoS One. 2019;14(1):e0209351. doi:10.1371/journal.pone.020935130629626
  • JinB, SunT, YuXH, YangYX, YeoAET. The effects of TLR activation on T-cell development and differentiation. Clin Dev Immunol. 2012;2012. doi:10.1155/2012/836485
  • KabelitzD. Expression and function of toll-like receptors in T lymphocytes. Curr Opin Immunol. 2007;19(1):39–45. doi:10.1016/j.coi.2006.11.00717129718
  • RahmanAH, TaylorDK, TurkaLA. The contribution of direct TLR signaling to T cell responses. Immunol Res. 2009;45:25–36. doi:10.1007/s12026-009-8113-x19597998
  • ReynoldsJM, PappuBP, PengJ, et al. Toll-like receptor 2 signaling in CD4+ T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease. Immunity. 2010;32(5):692–702. doi:10.1016/j.immuni.2010.04.01020434372
  • ReynoldsJM, MartinezGJ, ChungY, DongC. Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc Natl Acad Sci. 2012;109(32):13064–13069. doi:10.1073/pnas.112058510922826216
  • CohenIR, Zanin-ZhorovA. Signaling via TLR2 and TLR4 directly down-regulates T cell effector functions: the regulatory face of danger signals. Front Immunol. 2013;4:211. doi:10.3389/fimmu.2013.0021123898332
  • ZhaoRR, YangXF, DongJ, et al. Toll-like receptor 2 promotes T helper 17 cells response in hepatitis B virus infection. Int J Clin Exp Med. 2015;8(5):7315–7323.26221271
  • XuC, LuY, ZhengX, et al. TLR2 expression in peripheral CD4+ T cells promotes Th17 response and is associated with disease aggravation of hepatitis B virus-related acute-on-chronic liver failure. Front Immunol. 2017;8. doi:10.3389/fimmu.2017.01609
  • NyirendaMH, SanvitoL, DarlingtonPJ, et al. TLR2 stimulation drives human naive and effector regulatory T cells into a Th17-like phenotype with reduced suppressive function. J Immunol. 2011;187(5):2278–2290. doi:10.4049/jimmunol.100371521775683
  • NyirendaMH, MorandiE, VinkemeierU, et al. TLR2 stimulation regulates the balance between regulatory T cell and Th17 function: a novel mechanism of reduced regulatory T cell function in multiple sclerosis. J Immunol. 2015;194(12):5761–5774. doi:10.4049/jimmunol.140047225980006
  • KnoblochJ, SchildK, JungckD, et al. The T-helper cell type 1 immune response to gram-negative bacterial infections is impaired in COPD. Am J Respir Crit Care Med. 2011;183(2):204–214. doi:10.1164/rccm.201002-0199OC20709824
  • KnoblochJ, ChikosiSJ, YanikS, RuppJ, JungckD, KochA. A systemic defect in toll-like receptor 4 signaling increases lipopolysaccharide-induced suppression of IL-2-dependent T-cell proliferation in COPD. Am J Physiol Lung Cell Mol Physiol. 2015;310:L24–L39. doi:10.1152/ajplung.00367.201426498252
  • LucasK, MaesM. Role of the Toll Like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Mol Neurobiol. 2013;48(1):190–204. doi:10.1007/s12035-013-8425-723436141
  • MistryP, LairdMHW, SchwarzRS, et al. Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain. Proc Natl Acad Sci. 2015;112(7):5455–5460. doi:10.1073/pnas.142257611225870276
  • RoyA, SrivastavaM, SaqibU, et al. Potential therapeutic targets for inflammation in toll-like receptor 4 (TLR4)-mediated signaling pathways. Int Immunopharmacol. 2016;40:79–89. doi:10.1016/j.intimp.2016.08.02627584057
  • GaoW, XiongY, LiQ, YangH. Inhibition of toll-like receptor signaling as a promising therapy for inflammatory diseases: a journey from molecular to nano therapeutics. Front Physiol. 2017;8:508. doi:10.3389/fphys.2017.0050828769820
  • Di PadovaF, QuesniauxVFJ, RyffelB. MyD88 as a therapeutic target for inflammatory lung diseases. Expert Opin Ther Targets. 2018;22(5):401–408. doi:10.1080/14728222.2018.146413929658361
  • ToshchakovVY, JavmenA. Targeting the TLR signalosome with TIR domain-derived cell-permeable decoy peptides: the current state and perspectives. Innate Immun. 2020;1:13. doi:10.1177/1753425919844310
  • JiJ, von ScheeleI, BillingB, et al. Effects of budesonide on toll-like receptor expression in alveolar macrophages from smokers with and without COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:1035–1043. doi:10.2147/COPD.S10266827274225
  • von ScheeleI, LarssonK, PalmbergL. Budesonide enhances toll-like receptor 2 expression in activated bronchial epithelial cells. Inhal Toxicol. 2010;22(6):493–499. doi:10.3109/0895837090352121620388003
  • PaceE, Di SanoC, FerraroM, et al. Budesonide increases TLR4 and TLR2 expression in treg lymphocytes of allergic asthmatics. Pulm Pharmacol Ther. 2015;32:93–100. doi:10.1016/j.pupt.2015.02.00325722071
  • LiuW, LiuZ, ZhangW, CaiS. Ulinastatin protects the lungs of COPD rats through the HMGB1/TLR4 signaling pathway. Oncol Lett. 2018;16(3):4057–4063. doi:10.3892/ol.2018.912330128028
  • ZengX, MedM, LiuX, BaoH, ZhangY, TanE. Sulforaphane suppressed LPS and Pam3CSK4 mediated inflammation in COPD through MyD88-dependent toll-like receptors pathway. Chest. 2016;149(4):A351. doi:10.1016/j.chest.2016.02.366
  • MaJ, TianY, LiJ, et al. Effect of bufei yishen granules combined with electroacupuncture in rats with chronic obstructive pulmonary disease via the regulation of TLR-4/NF-κB signaling. Evid Based Complement Alternat. 2019;2019. doi:10.1155/2019/6708645
  • AzamS, JakariaM, KimIS, KimJ, HaqueM, ChoiDK. Regulation of Toll-Like Receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: focus on TLR4 signaling. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.01000
  • CroasdellA, SimePJ, PhippsRP. Resolvin D2 decreases TLR4 expression to mediate resolution in human monocytes. FASEB J. 2016;30(9):3181–3193. doi:10.1096/fj.201600375R27256622
  • McKelveyAC, LearTB, DunnSR, et al. RING finger E3 ligase PPP1R11 regulates TLR2 signaling and innate immunity. Elife. 2016;5. doi:10.7554/eLife.18496.001
  • AnwarMA, ShahM, KimJ, ChoiS. Recent clinical trends in toll-like receptor targeting therapeutics. Med Res Rev. 2019;39(3):1053–1090. doi:10.1002/med.2155330450666
  • JavaidN, YasmeenF, ChoiS. Toll-like receptors and relevant emerging therapeutics with reference to delivery methods. Pharmaceutics. 2019;11(9):441. doi:10.3390/pharmaceutics11090441
  • Henriksen-LaceyM, KorsholmKS, AndersenP, PerrieY, ChristensenD. Liposomal vaccine delivery systems. Expert Opin Drug Deliv. 2011;8(4):505–519. doi:10.1517/17425247.2011.55808121413904
  • LiY, HuangG, ZhangX, et al. Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater. 2013;23:660–672. doi:10.1002/adfm.201201708
  • IrvineDJ, HansonMC, RakhraK, TokatlianT. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev. 2015;115(19):11109–11146. doi:10.1021/acs.chemrev.5b0010926154342
  • KesharwaniP, JainK, JainNK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci. 2014;39:268–307. doi:10.1016/j.progpolymsci.2013.07.005
  • JansookP, OgawaN, LoftssonT. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm. 2018;535(1–2):272–284.29138045
  • EttmayerP, AmidonGL, ClementB, TestaB. Lessons learned from marketed and investigational prodrugs. J Med Chem. 2004;47:2393–2404. doi:10.1021/jm030381215115379
  • SouthworthT, MetrykaA, LeaS, FarrowS, PlumbJ, SinghD. IFN-γ synergistically enhances LPS signalling in alveolar macrophages from COPD patients and controls by corticosteroid-resistant STAT1 activation. Br J Pharmacol. 2012;166:2070–2083. doi:10.1111/j.1476-5381.2012.01907.x22352763