92
Views
4
CrossRef citations to date
0
Altmetric
Original Research

PTPLAD2 and USP49 Involved in the Pathogenesis of Smoke-Induced COPD by Integrative Bioinformatics Analysis

, , &
Pages 2515-2526 | Published online: 15 Oct 2020

References

  • BlancoI, DiegoI, BuenoP, Casas-MaldonadoF, MiravitllesM. Geographic distribution of COPD prevalence in the world displayed by geographic information system maps. Eur Respir J. 2019;54:1. doi:10.1183/13993003.00610-2019
  • DecramerM, JanssensW, MiravitllesM. Chronic obstructive pulmonary disease. Lancet (London, England). 2012;379(9823):1341–1351. doi:10.1016/S0140-6736(11)60968-9
  • HoggJC, TimensW. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol. 2009;4:435–459. doi:10.1146/annurev.pathol.4.110807.09214518954287
  • WangC, XuJ, YangL, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet (London, England). 2018;391(10131):1706–1717. doi:10.1016/S0140-6736(18)30841-9
  • ChengF, DesaiRJ, HandyDE, et al. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun. 2018;9(1):2691. doi:10.1038/s41467-018-05116-530002366
  • TsaiM-J, ChangW-A, JianS-F, ChangK-F, SheuC-C, KuoP-L. Possible mechanisms mediating apoptosis of bronchial epithelial cells in chronic obstructive pulmonary disease - a next-generation sequencing approach. Pathol Res Pract. 2018;214(9):1489–1496. doi:10.1016/j.prp.2018.08.00230115538
  • TsaiM-J, TsaiY-C, ChangW-A, et al. Deducting MicroRNA-mediated changes common in bronchial epithelial cells of asthma and chronic obstructive pulmonary disease-a next-generation sequencing-guided bioinformatic approach. Int J Mol Sci. 2019;20:3. doi:10.3390/ijms20030553
  • LinY-Z, ZhongX-N, ChenX, LiangY, ZhangH, ZhuD-L. Roundabout signaling pathway involved in the pathogenesis of COPD by integrative bioinformatics analysis. Int J Chron Obstruct Pulmon Dis. 2019;14:2145–2162. doi:10.2147/COPD.S21605031571851
  • WeiL, XuD, QianY, et al. Comprehensive analysis of gene-expression profile in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2015;10:1103–1109.26089660
  • LangfelderP, HorvathS. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559. doi:10.1186/1471-2105-9-559
  • LiuX, HuA-X, ZhaoJ-L, ChenF-L. Identification of key gene modules in human osteosarcoma by co-expression analysis weighted gene co-expression network analysis (WGCNA). J Cell Biochem. 2017;118(11):3953–3959. doi:10.1002/jcb.2605028398605
  • ShiZ, DerowCK, ZhangB. Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression. BMC Syst Biol. 2010;4:74. doi:10.1186/1752-0509-4-7420507583
  • ZhangH, ZhaoX, WangM, JiW. Key modules and hub genes identified by coexpression network analysis for revealing novel biomarkers for larynx squamous cell carcinoma. J Cell Biochem. 2019;120(12):19832–19840. doi:10.1002/jcb.2928831310372
  • YaoQ, SongZ, WangB, QinQ, ZhangJ-A. Identifying key genes and functionally enriched pathways in Sjögren’s syndrome by weighted gene co-expression network analysis. Front Genet. 2019;10:1142. doi:10.3389/fgene.2019.0114231798636
  • MorrowJD, ZhouX, LaoT, et al. Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Sci Rep. 2017;7:44232. doi:10.1038/srep4423228287180
  • RabeKF, WatzH. Chronic obstructive pulmonary disease. Lancet (London, England). 2017;389(10082):1931–1940. doi:10.1016/S0140-6736(17)31222-9
  • BuschR, QiuW, Lasky-SuJ, MorrowJ, CrinerG, DeMeoD. Differential DNA methylation marks and gene comethylation of COPD in African-Americans with COPD exacerbations. Respir Res. 2016;17(1):143. doi:10.1186/s12931-016-0459-827814717
  • McLeanS, HoogendoornM, HoogenveenRT, et al. Projecting the COPD population and costs in England and Scotland: 2011 to 2030. Sci Rep. 2016;6:31893. doi:10.1038/srep3189327583987
  • ChouW-C, ChengA-L, BrottoM, ChuangC-Y. Visual gene-network analysis reveals the cancer gene co-expression in human endometrial cancer. BMC Genomics. 2014;15:300. doi:10.1186/1471-2164-15-30024758163
  • WangY, ChenL, JuL, et al. Novel biomarkers associated with progression and prognosis of bladder cancer identified by co-expression analysis. Front Oncol. 2019;9:1030. doi:10.3389/fonc.2019.0103031681575
  • StrausbergRL, FeingoldEA, GrouseLH, et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A. 2002;99(26):16899–16903.12477932
  • NordH, HartmannC, AnderssonR, et al. Characterization of novel and complex genomic aberrations in glioblastoma using a 32K BAC array. Neuro-Oncology. 2009;11(6):803–818. doi:10.1215/15228517-2009-01319304958
  • ZhuS, WangZ, ZhangZ, et al. PTPLAD2 is a tumor suppressor in esophageal squamous cell carcinogenesis. FEBS Lett. 2014;588(6):981–989. doi:10.1016/j.febslet.2014.01.05824530685
  • ZhangW, ZhangY, ZhangH, ZhaoQ, LiuZ, XuY. USP49 inhibits ischemia-reperfusion-induced cell viability suppression and apoptosis in human AC16 cardiomyocytes through DUSP1-JNK1/2 signaling. J Cell Physiol. 2019;234(5):6529–6538. doi:10.1002/jcp.2739030246457
  • LuoK, LiY, YinY, et al. USP49 negatively regulates tumorigenesis and chemoresistance through FKBP51-AKT signaling. EMBO J. 2017;36(10):1434–1446. doi:10.15252/embj.20169566928363942
  • ShenW-M, YinJ-N, XuR-J, XuD-F, ZhengS-Y. Ubiquitin specific peptidase 49 inhibits non-small cell lung cancer cell growth by suppressing PI3K/AKT signaling. Kaohsiung J Med Sci. 2019;35(7):401–407.31001918