201
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Th1/Th17 Cytokine Profiles are Associated with Disease Severity and Exacerbation Frequency in COPD Patients

, , , , , , ORCID Icon, , , ORCID Icon & show all
Pages 1287-1299 | Published online: 08 Jun 2020

References

  • BarnesPJ, BurneyPG, SilvermanEK, et al. Chronic obstructive pulmonary disease. Nat Rev Dis Primers. 2015;1(1):15076. doi:10.1038/nrdp.2015.7627189863
  • ShannonAC, MatthewJR, GaryAK. T-cell immunity In: RonaldH, EdwardJB, LeslieES, et al. editors. Hematology: Basic Principles and Practice. Philadelphia: Elsevier; 2018:221–239.
  • ChristensonSA, SteilingK, van den BergeM, et al. Asthma-COPD overlap. Clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191(7):758–766. doi:10.1164/rccm.201408-1458OC25611785
  • SinghD, KolsumU, BrightlingCE, et al. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J. 2014;44(6):1697–1700. doi:10.1183/09031936.0016241425323230
  • Le RouzicO, PichavantM, FrealleE, GuillonA, Si-TaharM, GossetP. Th17 cytokines: novel potential therapeutic targets for COPD pathogenesis and exacerbations. Eur Respir J. 2017;50(4):1602434. doi:10.1183/13993003.02434-201629025886
  • RovinaN, KoutsoukouA, KoulourisNG. Inflammation and immune response in COPD: where do we stand? Mediators Inflamm. 2013;2013:413735. doi:10.1155/2013/41373523956502
  • ImaniS, SalimianJ, FuJ, GhaneiM, PanahiY. Th17/Treg-related cytokine imbalance in sulfur mustard exposed and stable chronic obstructive pulmonary (COPD) patients: correlation with disease activity. Immunopharmacol Immunotoxicol. 2016;38(4):270–280. doi:10.1080/08923973.2016.118840227241137
  • WangH, YingH, WangS, et al. Imbalance of peripheral blood Th17 and Treg responses in patients with chronic obstructive pulmonary disease. Clin Respir J. 2015;9(3):330–341. doi:10.1111/crj.1214724720797
  • ZouY, ChenX, LiuJ, et al. Serum IL-1beta and IL-17 levels in patients with COPD: associations with clinical parameters. Int J Chron Obstruct Pulmon Dis. 2017;12:1247–1254. doi:10.2147/COPD.S13187728490868
  • SinghS, VermaSK, KumarS, et al. Correlation of severity of chronic obstructive pulmonary disease with potential biomarkers. Immunol Lett. 2018;196:1–10. doi:10.1016/j.imlet.2018.01.00429329680
  • JiangS, ShanF, ZhangY, JiangL, ChengZ. Increased serum IL-17 and decreased serum IL-10 and IL-35 levels correlate with the progression of COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:2483–2494. doi:10.2147/COPD.S16719230154651
  • SuissaS, ErnstP, HudsonM. TNF-alpha antagonists and the prevention of hospitalisation for chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2008;21(1):234–238. doi:10.1016/j.pupt.2007.03.00317517530
  • RennardSI, FogartyC, KelsenS, et al. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175(9):926–934. doi:10.1164/rccm.200607-995OC17290043
  • DentenerMA, CreutzbergEC, PenningsHJ, RijkersGT, MerckenE, WoutersEF. Effect of infliximab on local and systemic inflammation in chronic obstructive pulmonary disease: a pilot study. Respiration. 2008;76(3):275–282. doi:10.1159/00011738618277064
  • AaronSD, VandemheenKL, MaltaisF, et al. TNFalpha antagonists for acute exacerbations of COPD: a randomised double-blind controlled trial. Thorax. 2013;68(2):142–148. doi:10.1136/thoraxjnl-2012-20243223161645
  • EichA, UrbanV, JutelM, et al. A randomized, placebo-controlled phase 2 trial of CNTO 6785 in chronic obstructive pulmonary disease. COPD. 2017;14(5):476–483. doi:10.1080/15412555.2017.133569728753067
  • VestboJ, HurdSS, AgustiAG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–365. doi:10.1164/rccm.201204-0596PP22878278
  • PavordID, PizzichiniMM, PizzichiniE, HargreaveFE. The use of induced sputum to investigate airway inflammation. Thorax. 1997;52(6):498–501. doi:10.1136/thx.52.6.4989227713
  • KellyMM, KeatingsV, LeighR, et al. Analysis of fluid-phase mediators. Eur Respir J. 2002;20(Suppl Supplement 37):S24–S39. doi:10.1183/09031936.02.00002402
  • LubinJH, ColtJS, CamannD, et al. Epidemiologic evaluation of measurement data in the presence of detection limits. Environ Health Perspect. 2004;112(17):1691–1696. doi:10.1289/ehp.719915579415
  • HornungRW, ReedLD. Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg. 1990;5(1):46–51. doi:10.1080/1047322X.1990.10389587
  • SteinhausH. Sur la division des corps matériels en parties. Bull Acad Polon Sci Cl III. 1956;4:801–804.
  • KetchenDJ, ShookCL. The application of cluster analysis in strategic management research: an analysis and critique. Strategic Manage J. 1996;17(6):441–458. doi:10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G
  • CharradM, GhazzaliN, BoiteauV, NiknafsA. NbClust: an R package for determining the relevant number of clusters in a data set. J Stat Softw. 2014;61(6):1–36. doi:10.18637/jss.v061.i06
  • ChurgA, WangRD, TaiH, WangX, XieC, WrightJL. Tumor necrosis factor-alpha drives 70% of cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med. 2004;170(5):492–498. doi:10.1164/rccm.200404-511OC15184206
  • AaronSD, AngelJB, LunauM, et al. Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163(2):349–355. doi:10.1164/ajrccm.163.2.200312211179105
  • BhatnagarS, PanguluriSK, GuptaSK, DahiyaS, LundyRF, KumarA. Tumor necrosis factor-alpha regulates distinct molecular pathways and gene networks in cultured skeletal muscle cells. PLoS One. 2010;5(10):e13262. doi:10.1371/journal.pone.001326220967264
  • JuCR, ChenRC. Serum myostatin levels and skeletal muscle wasting in chronic obstructive pulmonary disease. Respir Med. 2012;106(1):102–108. doi:10.1016/j.rmed.2011.07.01621840694
  • TomodaK, YoshikawaM, ItohT, et al. Elevated circulating plasma adiponectin in underweight patients with COPD. Chest. 2007;132(1):135–140. doi:10.1378/chest.07-022717625082
  • CalikogluM, SahinG, UnluA, et al. Leptin and TNF-alpha levels in patients with chronic obstructive pulmonary disease and their relationship to nutritional parameters. Respiration. 2004;71(1):45–50. doi:10.1159/00007564814872110
  • HurstJR, PereraWR, WilkinsonTM, DonaldsonGC, WedzichaJA. Systemic and upper and lower airway inflammation at exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173(1):71–78. doi:10.1164/rccm.200505-704OC16179639
  • Pinto-PlataVM, LivnatG, GirishM, et al. Systemic cytokines, clinical and physiological changes in patients hospitalized for exacerbation of COPD. Chest. 2007;131(1):37–43. doi:10.1378/chest.06-066817218554
  • DoeC, BafadhelM, SiddiquiS, et al. Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest. 2010;138(5):1140–1147. doi:10.1378/chest.09-305820538817
  • Ponce-GallegosMA, Ramirez-VenegasA, Falfan-ValenciaR. Th17 profile in COPD exacerbations. Int J Chron Obstruct Pulmon Dis. 2017;12:1857–1865. doi:10.2147/COPD.S13659228694696
  • ZhangX, AngkasekwinaiP, DongC, TangH. Structure and function of interleukin-17 family cytokines. Protein Cell. 2011;2(1):26–40. doi:10.1007/s13238-011-1006-521337007
  • RutzS, EidenschenkC, OuyangW. IL-22, not simply a Th17 cytokine. Immunol Rev. 2013;252(1):116–132. doi:10.1111/imr.1202723405899
  • ZhengX, ZhangL, ChenJ, GuY, XuJ, OuyangY. Dendritic cells and Th17/Treg ratio play critical roles in pathogenic process of chronic obstructive pulmonary disease. Biomed Pharmacother. 2018;108:1141–1151. doi:10.1016/j.biopha.2018.09.11330372815
  • RoosAB, SethiS, NikotaJ, et al. IL-17A and the promotion of neutrophilia in acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192(4):428–437. doi:10.1164/rccm.201409-1689OC26039632
  • ChangY, Al-AlwanL, AudusseauS, et al. Genetic deletion of IL-17A reduces cigarette smoke-induced inflammation and alveolar type II cell apoptosis. Am J Physiol Lung Cell Mol Physiol. 2014;306(2):L132–L143. doi:10.1152/ajplung.00111.201324097560
  • YanagisawaH, HashimotoM, MinagawaS, et al. Role of IL-17A in murine models of COPD airway disease. Am J Physiol Lung Cell Mol Physiol. 2017;312(1):L122–L130. doi:10.1152/ajplung.00301.201627913421
  • KurimotoE, MiyaharaN, KanehiroA, et al. IL-17A is essential to the development of elastase-induced pulmonary inflammation and emphysema in mice. Respir Res. 2013;14(1):5. doi:10.1186/1465-9921-14-523331548
  • SethiS, MurphyTF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med. 2008;359(22):2355–2365. doi:10.1056/NEJMra080035319038881
  • SharanR, Perez-CruzM, KervoazeG, et al. Interleukin-22 protects against non-typeable Haemophilus influenzae infection: alteration during chronic obstructive pulmonary disease. Mucosal Immunol. 2017;10(1):139–149. doi:10.1038/mi.2016.4027143304
  • PichavantM, SharanR, Le RouzicO, et al. IL-22 defect during streptococcus pneumoniae infection triggers exacerbation of chronic obstructive pulmonary disease. EBioMedicine. 2015;2(11):1686–1696. doi:10.1016/j.ebiom.2015.09.04026870795
  • Le RouzicO, KoneB, KluzaJ, et al. Cigarette smoke alters the ability of human dendritic cells to promote anti-Streptococcus pneumoniae Th17 response. Respir Res. 2016;17(1):94. doi:10.1186/s12931-016-0408-627460220
  • KingPT, LimS, PickA, et al. Lung T-cell responses to nontypeable Haemophilus influenzae in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2013;131(5):1314–1321.e14. doi:10.1016/j.jaci.2012.09.03023142009
  • van de KerkhofPC, GriffithsCE, ReichK, et al. Secukinumab long-term safety experience: a pooled analysis of 10 Phase II and III clinical studies in patients with moderate to severe plaque psoriasis. J Am Acad Dermatol. 2016;75(1):83–98.e4. doi:10.1016/j.jaad.2016.03.02427180926
  • AndelidK, TengvallS, AnderssonA, et al. Systemic cytokine signaling via IL-17 in smokers with obstructive pulmonary disease: a link to bacterial colonization? Int J Chron Obstruct Pulmon Dis. 2015;10:689–702. doi:10.2147/COPD.S7627325848245
  • BarczykA, PierzchalaW, SozanskaE. Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respir Med. 2003;97(6):726–733. doi:10.1053/rmed.2003.150712814161
  • ZhangX, ZhengH, ZhangH, et al. Increased interleukin (IL)-8 and decreased IL-17 production in chronic obstructive pulmonary disease (COPD) provoked by cigarette smoke. Cytokine. 2011;56(3):717–725. doi:10.1016/j.cyto.2011.09.01021996014
  • LiaoSX, DingT, RaoXM, et al. Cigarette smoke affects dendritic cell maturation in the small airways of patients with chronic obstructive pulmonary disease. Mol Med Rep. 2015;11(1):219–225. doi:10.3892/mmr.2014.275925338516
  • GiviME, FolkertsG, WagenaarGT, RedegeldFA, MortazE. Cigarette smoke differentially modulates dendritic cell maturation and function in time. Respir Res. 2015;16(1):131. doi:10.1186/s12931-015-0291-626498483
  • Solleiro-VillavicencioH, Quintana-CarrilloR, Falfan-ValenciaR, Vargas-RojasMI. Chronic obstructive pulmonary disease induced by exposure to biomass smoke is associated with a Th2 cytokine production profile. Clin Immunol. 2015;161(2):150–155. doi:10.1016/j.clim.2015.07.00926220216
  • Ponce-GallegosMA, Perez-RubioG, Ambrocio-OrtizE, et al. Genetic variants in IL17A and serum levels of IL-17A are associated with COPD related to tobacco smoking and biomass burning. Sci Rep. 2020;10(1):784. doi:10.1038/s41598-020-57606-631964947
  • WangW, DengG, ZhangG, et al. Genetic polymorphism rs8193036 of IL17A is associated with increased susceptibility to pulmonary tuberculosis in Chinese Han population. Cytokine. 2020;127:154956. doi:10.1016/j.cyto.2019.15495631864094
  • EspinozaJL, TakamiA, NakataK, et al. A genetic variant in the IL-17 promoter is functionally associated with acute graft-versus-host disease after unrelated bone marrow transplantation. PLoS One. 2011;6(10):e26229. doi:10.1371/journal.pone.002622922028838