164
Views
12
CrossRef citations to date
0
Altmetric
Original Research

Identification and Bioinformatic Analysis of Circular RNA Expression in Peripheral Blood Mononuclear Cells from Patients with Chronic Obstructive Pulmonary Disease

ORCID Icon, ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Pages 1391-1401 | Published online: 16 Jun 2020

References

  • Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease 2020 report; 2020 Available from: https://goldcopd.org/gold-reports/.
  • WangC, XuJ, YangL, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet. 2018;391(10131):1706–1717.29650248
  • RothGA, AbateD, AbateKH, et al. Global, regional and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1736–1788.30496103
  • RabeKF, WatzH. Chronic obstructive pulmonary disease. Lancet. 2017;389(10082):1931–1940.28513453
  • BagdonasE, RaudoniuteJ, BruzauskaiteI, AldonyteR. Novel aspects of pathogenesis and regeneration mechanisms in COPD. Int J Chron Obstruct Pulmon Dis. 2015;10:995–1013.26082624
  • ZhangX, ShanP, JiangG, CohnL, LeePJ. Toll-like receptor 4 deficiency causes pulmonary emphysema. J Clin Invest. 2006;116(11):3050–3059.17053835
  • DonovanC, StarkeyMR, KimRY, et al. Roles for T/B lymphocytes and ILC2s in experimental chronic obstructive pulmonary disease. J Leukoc Biol. 2019;105(1):143–150.30260499
  • van EedenSF, HoggJC. Immune-modulation in chronic obstructive pulmonary disease: current concepts and future strategies. Respiration. 2019;1–16.
  • EbbesenKK, HansenTB, KjemsJ. Insights into circular RNA biology. RNA Biol. 2016;14(8):1035–1045.27982727
  • JeckWR, SorrentinoJA, WangK, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. Rna. 2013;19(2):141–157. 23249747
  • WangJ, ZhuM, PanJ, ChenC, XiaS, SongY. Circular RNAs: a rising star in respiratory diseases. Respir Res. 2019;20(1):3. 30611252
  • MemczakS, JensM, ElefsiniotiA, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–338. 23446348
  • ZhangZ, YangT, XiaoJ. Circular RNAs: promising biomarkers for human diseases. E Bio Medicine. 2018;34:267–274.
  • LiX, YangL, ChenLL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71(3):428–442.30057200
  • KulcheskiFR, ChristoffAP, MargisR. Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol. 2016;238:42–51.27671698
  • HansenTB, JensenTI, ClausenBH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–388.23446346
  • TayY, RinnJ, PandolfiPP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–352.24429633
  • ChengZ, YuC, CuiS, et al. circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nat Commun. 2019;10(1):3200.31324812
  • ZhouS, JiangH, LiM, et al. Circular RNA hsa_circ_0016070 is associated with Pulmonary Arterial Hypertension by promoting PASMC proliferation. Mol Ther Nucleic Acids. 2019;18:275–284.31593832
  • MaY, ZhangX, WangYZ, TianH, XuS. Research progress of circular RNAs in lung cancer. Cancer Biol Ther. 2019;20(2):123–129.30403899
  • de FraipontF, GazzeriS, ChoWC, EyminB. Circular RNAs and RNA splice variants as biomarkers for prognosis and therapeutic response in the liquid biopsies of lung cancer patients. Fron Genet. 2019;10:390.
  • YangL, LiuX, ZhangN, ChenL, XuJ, TangW. Investigation of circular RNAs and related genes in pulmonary fibrosis based on bioinformatics analysis. J Cell Biochem. 2019;120(7):11022–11032.
  • QianZ, LiuH, LiM, et al. Potential diagnostic power of blood circular RNA expression in active pulmonary tuberculosis. E Bio Medicine. 2018;27:18–26.
  • LiX, YuanZ, ChenJ, et al. Microarray analysis reveals the changes of circular RNA expression and molecular mechanism in acute lung injury mouse model. J Cell Biochem. 2019;120(10):16658–16667.31106457
  • EisenMB, SpellmanPT, BrownPO, BotsteinD. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998;95(25):14863–14868.9843981
  • ClineMS, SmootM, CeramiE, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2(10):2366–2382.17947979
  • AgarwalV, BellGW, NamJW, BartelDP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.
  • DweepH, GretzN. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697.26226356
  • SchambergerAC, MiseN, MeinersS, EickelbergO. Epigenetic mechanisms in COPD: implications for pathogenesis and drug discovery. Expert Opin on Drug Discov. 2014;9(6):609–628.
  • WuDD, SongJ, BartelS, Krauss-EtschmannS, RotsMG, HylkemaMN. The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach. Pharmacol Ther. 2018;182:1–14.28830839
  • HaqueS, HarriesLW. Circular RNAs (circRNAs) in health and disease. Genes. 2017;8(12):353.
  • KaurM, SinghD. Neutrophil chemotaxis caused by chronic obstructive pulmonary disease alveolar macrophages: the role of CXCL8 and the receptors CXCR1/CXCR2. J Pharmacol Exp Ther. 2013;347(1):173‐180.
  • ZengN, WangT, ChenM, et al. Cigarette smoke extract alters genome-wide profiles of circular RNAs and mRNAs in primary human small airway epithelial cells. J Cell Mol Med. 2019;23(8):5532–5541.31140741
  • LeeH, KimSR, OhY, ChoSH, SchleimerRP, LeeYC. Targeting insulin-like growth factor-I and insulin-like growth factor-binding protein-3 signaling pathways. A novel therapeutic approach for asthma. Am J Respir Cell Mol Biol. 2014;50(4):667–677.24219511
  • FujitaT, YoshiokaK, UmezawaH, et al. Role of CD69 in the pathogenesis of elastase-induced pulmonary inflammation and emphysema. Biochem Biophys Rep. 2016;7:400–407.28955931
  • TsuyusakiJ, KurodaF, KasuyaY, et al. Cigarette smoke-induced pulmonary inflammation is attenuated in CD69-deficient mice. J Recept Signal Transduct Res. 2011;31(6):434–439.22070386
  • ChungKF. p38 Mitogen-activated protein kinase pathways in Asthma and COPD. Chest. 2011;139(6):1470–1479.21652557
  • GaffeyK, ReynoldsS, PlumbJ, KaurM, SinghD. Increased phosphorylated p38 mitogen-activated protein kinase in COPD lungs. Eur Respir J. 2013;42(1):28–41.23060629
  • WuD, YuanY, LinZ, et al. Cigarette smoke extract induces placental growth factor release from human bronchial epithelial cells via ROS/MAPK (ERK-1/2)/Egr-1 axis. Int J Chron Obstruct Pulmon Dis. 2016;11:3031–3042.27980400
  • AoshibaK, YokohoriN, NagaiA. Alveolar wall apoptosis causes lung destruction, and emphysematous changes. Am J Respir Cell Mol Biol. 2003;28(5):555–562.12707011
  • DemedtsIK, DemoorT, BrackeKR, JoosGF, BrusselleGG. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res. 2006;7(1):53.16571143
  • BrusselleGG, JoosGF, BrackeKR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 2011;378(9795):1015–1026.21907865
  • ShaykhievR, CrystalRG. Innate immunity and chronic obstructive pulmonary disease: a mini-review. Gerontology. 2013;59(6):481–489.24008598
  • AnCH, WangXM, LamHC, et al. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol. 2012;303(9):L748–L757.22983353