185
Views
21
CrossRef citations to date
0
Altmetric
Clinical Trial Report

Efficacy and Safety of the CFTR Potentiator Icenticaftor (QBW251) in COPD: Results from a Phase 2 Randomized Trial

, , , , , , , ORCID Icon, , , & show all
Pages 2399-2409 | Published online: 05 Oct 2020

References

  • Global initiative for chronic obstructive lung disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2018 Report); 2018.
  • World health organization. Chronic Obstructive Pulmonary Disease (Copd); 2016.
  • HoggJC, ChuF, UtokaparchS, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645–2653. doi:10.1056/NEJMoa03215815215480
  • KimV, KelemenSE, Abuel-HaijaM, et al. Small airway mucous metaplasia and inflammation in chronic obstructive pulmonary disease. COPD. 2008;5(6):329–338. doi:10.1080/1541255080252244519353346
  • SaettaM, TuratoG, BaraldoS, et al. Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Am J Respir Crit Care Med. 2000;161(3):1016–1021. doi:10.1164/ajrccm.161.3.990708010712357
  • McDonoughJE, YuanR, SuzukiM, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365(17):1567–1575. doi:10.1056/NEJMoa110695522029978
  • FahyJV, DickeyBF. Airway mucus function and dysfunction. N Engl J Med. 2010;363(23):2233–2247. doi:10.1056/NEJMra091006121121836
  • BurgelPR, Nesme-MeyerP, ChanezP, et al. Initiatives bronchopneumopathie chronique obstructive scientific C. cough and sputum production are associated with frequent exacerbations and hospitalizations in COPD subjects. Chest. 2009;135(4):975–982. doi:10.1378/chest.08-206219017866
  • GuerraS, SherrillDL, VenkerC, CeccatoCM, HalonenM, MartinezFD. Chronic bronchitis before age 50 years predicts incident airflow limitation and mortality risk. Thorax. 2009;64(10):894–900. doi:10.1136/thx.2008.11061919581277
  • KimV, HanMK, VanceGB, et al. The chronic bronchitic phenotype of COPD: an analysis of the COPDgene study. Chest. 2011;140(3):626–633. doi:10.1378/chest.10-294821474571
  • KimV, ZhaoH, BoriekAM, et al. Persistent and newly developed chronic bronchitis are associated with worse outcomes in chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2016;13(7):1016–1025. doi:10.1513/AnnalsATS.201512-800OC27158740
  • VestboJ, PrescottE, LangeP. Association of chronic mucus hypersecretion with fev1 decline and chronic obstructive pulmonary disease morbidity. Copenhagen city heart study group. Am J Respir Crit Care Med. 1996;153(5):1530–1535. doi:10.1164/ajrccm.153.5.86305978630597
  • KesimerM, SmithBM, CeppeA, et al. Mucin concentrations and peripheral airways obstruction in COPD. Am J Respir Crit Care Med. 2018;198(11):1453–1456. doi:10.1164/rccm.201806-1016LE30130124
  • CantinAM, HanrahanJW, BilodeauG, et al. Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am J Respir Crit Care Med. 2006;173(10):1139–1144. doi:10.1164/rccm.200508-1330OC16497995
  • ClunesLA, DaviesCM, CoakleyRD, et al. Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB J. 2012;26(2):533–545. doi:10.1096/fj.11-19237721990373
  • KreindlerJL, JacksonAD, KempPA, BridgesRJ, DanahayH. Inhibition of chloride secretion in human bronchial epithelial cells by cigarette smoke extract. Am J Physiol Lung Cell Mol Physiol. 2005;288(5):L894–902. doi:10.1152/ajplung.00376.200415626749
  • RajuSV, LinVY, LiuL, et al. The cystic fibrosis transmembrane conductance regulator potentiator ivacaftor augments mucociliary clearance abrogating cystic fibrosis transmembrane conductance regulator inhibition by cigarette smoke. Am J Respir Cell Mol Biol. 2017;56(1):99–108. doi:10.1165/rcmb.2016-0226OC27585394
  • DransfieldMT, WilhelmAM, FlanaganB, et al. Acquired cystic fibrosis transmembrane conductance regulator dysfunction in the lower airways in COPD. Chest. 2013;144(2):498–506. doi:10.1378/chest.13-027423538783
  • RajuSV, JacksonPL, CourvilleCA, et al. Cigarette smoke induces systemic defects in cystic fibrosis transmembrane conductance regulator function. Am J Respir Crit Care Med. 2013;188(11):1321–1330. doi:10.1164/rccm.201304-0733OC24040746
  • SloanePA, ShastryS, WilhelmA, et al. A pharmacologic approach to acquired cystic fibrosis transmembrane conductance regulator dysfunction in smoking related lung disease. PLoS One. 2012;7(6):e39809. doi:10.1371/journal.pone.003980922768130
  • CourvilleCA, TidwellS, LiuB, AccursoFJ, DransfieldMT, RoweSM. Acquired defects in CFTR-dependent beta-adrenergic sweat secretion in chronic obstructive pulmonary disease. Respir Res. 2014;15(1):25. doi:10.1186/1465-9921-15-2524568560
  • LambertJA, RajuSV, TangLP, et al. Cystic fibrosis transmembrane conductance regulator activation by roflumilast contributes to therapeutic benefit in chronic bronchitis. Am J Respir Cell Mol Biol. 2014;50(3):549–558. doi:10.1165/rcmb.2013-0228OC24106801
  • SolomonGM, HathorneH, LiuB, et al. Pilot evaluation of ivacaftor for chronic bronchitis. Lancet Respir Med. 2016;4(6):e32–33. doi:10.1016/S2213-2600(16)30047-927185048
  • KazaniS, AlcantaraJ, DebonnettL, et al. QBW251 is a safe and efficacious CFTR potentiator for patients with cystic fibrosis. Am J Respir Crit Care Med. 2016;193:A7789.
  • EggerB, JostK, AnagnostopoulouP, et al. Lung clearance index and moment ratios at different cut-off values in infant multiple-breath washout measurements. Pediatr Pulmonol. 2016;51(12):1373–1381. doi:10.1002/ppul.2348327214661
  • MillerMR, HankinsonJ, BrusascoV, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338. doi:10.1183/09031936.05.0003480516055882
  • BerryDA. Bayesian clinical trials. Nat Rev Drug Discov. 2006;5(1):27–36. doi:10.1038/nrd192716485344
  • DaviesJC, CunninghamS, AltonEW, InnesJA. Lung clearance index in cf: a sensitive marker of lung disease severity. Thorax. 2008;63(2):96–97. doi:10.1136/thx.2007.08276818234652
  • FähndrichS, LepperPM, TrudzinskiF, SeibertM, WagenpfeilS, BalsR. Lung clearance index is increased in patients with COPD - LCI measurements in the daily routine. J Pulm Respir Med. 2016;6(3):354. doi:10.4172/2161-105X.1000354
  • DaviesJ, SheridanH, BellN, et al. Assessment of clinical response to ivacaftor with lung clearance index in cystic fibrosis patients with a g551d-CFTR mutation and preserved spirometry: a randomised controlled trial. Lancet Respir Med. 2013;1(8):630–638. doi:10.1016/S2213-2600(13)70182-624461666
  • RatjenF, HugC, MarigowdaG, et al. Efficacy and safety of lumacaftor and ivacaftor in patients aged 6–11 years with cystic fibrosis homozygous for f508del-CFTR: a randomised, placebo-controlled Phase 3 trial. Lancet Respir Med. 2017;5(7):557–567. doi:10.1016/S2213-2600(17)30215-128606620
  • NeuenschwanderB, Capkun-NiggliG, BransonM, SpiegelhalterDJ. Summarizing historical information on controls in clinical trials. Clin Trial. 2010;7(1):5–18. doi:10.1177/1740774509356002
  • CalverleyPM, RabeKF, GoehringUM, KristiansenS, FabbriLM, MartinezFJ. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 2009;374(9691):685–694. doi:10.1016/S0140-6736(09)61255-119716960
  • CalverleyPMA, Sanchez-TorilF, McIvorA, TeichmannP, BredenbroekerD, FabbriLM. Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176(2):154–161. doi:10.1164/rccm.200610-1563OC17463412
  • FabbriLM, CalverleyPM, Izquierdo-AlonsoJL, et al. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials. Lancet. 2009;374(9691):695–703. doi:10.1016/S0140-6736(09)61252-619716961
  • MartinezFJ, RabeKF, SethiS, et al. Effect of roflumilast and inhaled corticosteroid/long-acting β2-agonist on chronic obstructive pulmonary disease exacerbations (RE2SPOND). A randomized clinical trial. Am J Respir Crit Care Med. 2016;194(5):559–567. doi:10.1164/rccm.201607-1349OC27585384
  • SueDY. Measurement of lung volumes in patients with obstructive lung disease. A matter of time (constants). Ann Am Thorac Soc. 2013;10(5):525=530. doi:10.1513/AnnalsATS.201307-236OC
  • DuvoixA, DickensJ, HaqI, et al. Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease. Thorax. 2013;68(7):670–676. doi:10.1136/thoraxjnl-2012-20187122744884
  • FinneyLJ, RitchieA, PollardE, JohnstonSL, MalliaP. Lower airway colonization and inflammatory response in COPD: a focus on haemophilus influenzae. Int J Chron Obstruct Pulmon Dis. 2014;9:1119–1132. doi:10.2147/COPD.S5447725342897
  • HeltsheSL, Mayer-HamblettN, BurnsJL, et al. Pseudomonas aeruginosa in cystic fibrosis patients with g551d-CFTR treated with ivacaftor. Clin Infect Dis. 2015;60(5):703–712. doi:10.1093/cid/ciu94425425629
  • RoweSM, HeltsheSL, GonskaT, et al. Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in g551d-mediated cystic fibrosis. Am J Respir Crit Care Med. 2014;190(2):175–184. doi:10.1164/rccm.201404-0703OC24927234
  • HisertKB, HeltsheSL, PopeC, et al. Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections. Am J Respir Crit Care Med. 2017;195(12):1617–1628. doi:10.1164/rccm.201609-1954OC28222269
  • PezzuloAA, TangXX, HoeggerMJ, et al. Reduced airway surface ph impairs bacterial killing in the porcine cystic fibrosis lung. Nature. 2012;487(7405):109–113. doi:10.1038/nature1113022763554
  • NiI, JiC, VijN, ChuHW. Second-hand cigarette smoke impairs bacterial phagocytosis in macrophages by modulating CFTR dependent lipid-rafts. PLoS One. 2015;10(3):e0121200. doi:10.1371/journal.pone.012120025794013
  • PatelIS, SeemungalTA, WilksM, Lloyd-OwenSJ, DonaldsonGC, WedzichaJA. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax. 2002;57(9):759–764. doi:10.1136/thorax.57.9.75912200518