156
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Temperature Variability and Hospital Admissions for Chronic Obstructive Pulmonary Disease: Analysis of Attributable Disease Burden and Vulnerable Subpopulation

, , , , , & show all
Pages 2225-2235 | Published online: 22 Sep 2020

References

  • RothGA, AbateD, AbateKH, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1736–1788. doi:10.1016/S0140-6736(18)32203-7
  • JamesSL, AbateD, AbateKH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1789–1858. doi:10.1016/S0140-6736(18)32279-7
  • GuarascioAJ, RaySM, FinchCK, SelfTH. The clinical and economic burden of chronic obstructive pulmonary disease in the USA. Clinicoecon Outcomes Res. 2013;5:235–245. doi:10.2147/CEOR.S3432123818799
  • WooL, SmithHE, SullivanSD. The economic burden of chronic obstructive pulmonary disease in the asia-pacific region: a systematic review. Value Health Regional Issues. 2019;18:121–131. doi:10.1016/j.vhri.2019.02.002
  • FangL, GaoP, BaoH, et al. Chronic obstructive pulmonary disease in China: a nationwide prevalence study. Lancet Respir Med. 2018;6(6):421–430. doi:10.1016/S2213-2600(18)30103-629650407
  • MathersCD, LoncarD. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442. doi:10.1371/journal.pmed.003044217132052
  • Lopez-CamposJL, TanW, SorianoJB. Global burden of COPD. Respirology. 2016;21:14–23. doi:10.1111/resp.1266026494423
  • GasparriniA, GuoY, SeraF, et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planetary Health. 2017;1(9):e360–e367. doi:10.1016/S2542-5196(17)30156-029276803
  • DingZ, LiL, WeiR, et al. Association of cold temperature and mortality and effect modification in the subtropical plateau monsoon climate of Yuxi, China. Environ Res. 2016;150:431–437. doi:10.1016/j.envres.2016.06.02927376930
  • ChenR, YinP, WangL, et al. Association between ambient temperature and mortality risk and burden: time series study in 272 main Chinese cities. BMJ. 2018;363:k4306. doi:10.1136/bmj.k430630381293
  • YangJ, YinP, ZhouM, et al. The burden of stroke mortality attributable to cold and hot ambient temperatures: epidemiological evidence from China. Environ Int. 2016;92–93:232–238. doi:10.1016/j.envint.2016.04.001
  • LamHC, ChanEY, Goggins IIIWB. Comparison of short-term associations with meteorological variables between COPD and pneumonia hospitalization among the elderly in Hong Kong-a time-series study. Int J Biometeorol. 2018;62(8):1447–1460. doi:10.1007/s00484-018-1542-229730816
  • LuanG, YinP, WangL, ZhouM. Association between ambient temperature and chronic obstructive pulmonary disease: a population-based study of the years of life lost. Int J Environ Health Res. 2019;29(3):246–254. doi:10.1080/09603123.2018.153353330303404
  • SamaSR, KriebelD, GoreRJ, DeVriesR, RosielloR. Environmental triggers of COPD symptoms: a case cross-over study. BMJ Open Respir Res. 2017;4(1):e000179. doi:10.1136/bmjresp-2017-000179
  • SunS, CaoW, MasonTG, et al. Increased susceptibility to heat for respiratory hospitalizations in Hong Kong. Sci Total Environ. 2019;666:197–204. doi:10.1016/j.scitotenv.2019.02.22930798230
  • LiangW, LiangW, LiuW, LiuW, KuoH, KuoH. Diurnal temperature range and emergency room admissions for chronic obstructive pulmonary disease in Taiwan. Int J Biometeorol. 2009;53(1):17–23. doi:10.1007/s00484-008-0187-y18989710
  • MaY, ZhaoY, ZhouJ, JiangY, YangS, YuZ. The relationship between diurnal temperature range and COPD hospital admissions in Changchun, China. Environ Sci Pollut R. 2018;25(18):17942–17949. doi:10.1007/s11356-018-2013-3
  • ZhanZ, ZhaoY, PangS, ZhongX, WuC, DingZ. Temperature change between neighboring days and mortality in United States: A nationwide study. Sci Total Environ. 2017;584-585:1152–1161. doi:10.1016/j.scitotenv.2017.01.17728162760
  • GuoY, GasparriniA, ArmstrongBG, et al. Temperature variability and mortality: a multi-country study. Environ Health Perspect. 2016;124(10):1554–1559. doi:10.1289/EHP14927258598
  • ChengJ, XuZ, BambrickH, SuH, TongS, HuW. The mortality burden of hourly temperature variability in five capital cities, Australia: time-series and meta-regression analysis. Environ Int. 2017;109:10–19. doi:10.1016/j.envint.2017.09.01228923460
  • ZhangY, XiangQ, YuC, et al. Mortality risk and burden associated with temperature variability in China, United Kingdom and United States: comparative analysis of daily and hourly exposure metrics. Environ Res. 2019;179:108771. doi:10.1016/j.envres.2019.10877131574448
  • YangJ, ZhouM, LiM, et al. Vulnerability to the impact of temperature variability on mortality in 31 major Chinese cities. Environ Pollut. 2018;239:631–637. doi:10.1016/j.envpol.2018.04.09029709834
  • YaohuaT, HuiL, YaqinS, et al. Association between temperature variability and daily hospital admissions for cause specific cardiovascular disease in urban China: a national time- series study. PLoS Med. 2018;16(1):e1002738.
  • ZhaoQ, CoelhoM, LiS, et al. Spatiotemporal and demographic variation in the association between temperature variability and hospitalizations in Brazil during 2000-2015: a nationwide time-series study. Environ Int. 2018;120:345–353. doi:10.1016/j.envint.2018.08.02130114624
  • SunS, LadenF, HartJE, et al. Seasonal temperature variability and emergency hospital admissions for respiratory diseases: a population-based cohort study. Thorax. 2018;73(10):951–958. doi:10.1136/thoraxjnl-2017-21133329622691
  • HuK, GuoY, YangX, et al. Temperature variability and mortality in rural and urban areas in Zhejiang province, China: an application of a spatiotemporal index. Sci Total Environ. 2019;647:1044–1051. doi:10.1016/j.scitotenv.2018.08.09530180312
  • LuoK, LiR, WangZ, ZhangR, XuQ. Effect modification of the association between temperature variability and daily cardiovascular mortality by air pollutants in three Chinese cities. Environ Pollut. 2017;230:989–999. doi:10.1016/j.envpol.2017.07.04528763936
  • ZhangY, YuY, PengM, MengR, HuK, YuC. Temporal and seasonal variations of mortality burden associated with hourly temperature variability: a nationwide investigation in England and Wales. Environ Int. 2018;115:325–333. doi:10.1016/j.envint.2018.03.03629626694
  • ZhaoY, HuangZ, WangS, et al. Morbidity burden of respiratory diseases attributable to ambient temperature: a case study in a subtropical city in China. Environ Health. 2019;18(1):89. doi:10.1186/s12940-019-0529-831651344
  • National Health and Family Planning Commission of the People’s Republic of China [Internet]. Notice of the general office of the ministry of health on implementing the direct reporting work of the national health statistics network. Available from: http://www.nhc.gov.cn/zwgkzt/wsbysj/200806/36405.shtml. Accessed 7 7, 2020.
  • LiuX, KongD, FuJ, et al. Association between extreme temperature and acute myocardial infarction hospital admissions in Beijing, China: 2013–2016. PLoS One. 2018;13(10):e0204706. doi:10.1371/journal.pone.020470630332423
  • ChenJ, JiangH, WuL, et al. Association of ischemic and hemorrhagic strokes hospital admission with extreme temperature in Nanchang, China—a case-crossover study. J Clin Neurosci. 2017;43:89–93. doi:10.1016/j.jocn.2017.04.04428629681
  • MaC, YangJ, NakayamaSF, HondaY. The association between temperature variability and cause-specific mortality: evidence from 47 Japanese prefectures during 1972-2015. Environ Int. 2019;127:125–133. doi:10.1016/j.envint.2019.03.02530913457
  • VardoulakisS, DearK, HajatS, HeavisideC, EggenB, McMichaelAJ. Comparative assessment of the effects of climate change on heat- and cold-related mortality in the United Kingdom and Australia. Environ Health Persp. 2014;122(12):1285–1292. doi:10.1289/ehp.1307524
  • Cheng J, XuZ, BambrickH, SuH, Tong S, HuW. Impacts of heat, cold, and temperature variability on mortality in Australia, 2000-2009. Sci Total Environ. 2019;651(Pt2):2558–2565. doi:10.1016/j.scitotenv.2018.10.18630340191
  • ChenJ, YangJ, ZhouM, et al. Cold spell and mortality in 31 Chinese capital cities: definitions, vulnerability and implications. Environ Int. 2019;128:271–278. doi:10.1016/j.envint.2019.04.04931071590
  • GraudenzGS, LandgrafRG, JancarS, et al. The role of allergic rhinitis in nasal responses to sudden temperature changes. J Allergy Clin Immun. 2006;118(5):1126–1132. doi:10.1016/j.jaci.2006.07.00517088139
  • DingZ, LiL, XinL, et al. High diurnal temperature range and mortality: effect modification by individual characteristics and mortality causes in a case-only analysis. Sci Total Environ. 2016;544:627–634. doi:10.1016/j.scitotenv.2015.12.01626674692
  • LimYH, ReidCE, MannJK, JerrettM, KimH. Diurnal temperature range and short-term mortality in large US communities. Int J Biometeorol. 2015;59(9):1311–1319. doi:10.1007/s00484-014-0941-225465402
  • GarrettAT, RehrerNJ, PattersonMJ. Induction and decay of short-term heat acclimation in moderately and highly trained athletes. Sports Med. 2011;41(9):757–771. doi:10.2165/11587320-000000000-0000021846164
  • GarrettAT, GoosensNG, RehrerNJ, PattersonMJ, CotterJD. Induction and decay of short-term heat acclimation. Eur J Appl Physiol. 2009;107(6):659–670. doi:10.1007/s00421-009-1182-719727796
  • ZhangY, YuC, BaoJ, LiX. Impact of temperature variation on mortality: an observational study from 12 counties across Hubei Province in China. Sci Total Environ. 2017;587-588:196–203. doi:10.1016/j.scitotenv.2017.02.11728238433
  • FouilletA, ReyG, LaurentF, et al. Excess mortality related to the August 2003 heat wave in France. Int Arch Occ Env Hea. 2006;80(1):16–24. doi:10.1007/s00420-006-0089-4