104
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Mechanisms by Which the MBD2/miR-301a-5p/CXCL12/CXCR4 Pathway Regulates Acute Exacerbations of Chronic Obstructive Pulmonary Disease

, , , , , , , , , , & show all
Pages 2561-2572 | Published online: 19 Oct 2020

References

  • PauwelsRA, RabeKF. Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet. 2004;364(9434):613–620. doi:10.1016/S0140-6736(04)16855-415313363
  • MurrayCJ, LopezAD. Alternative projections of mortality and disability by cause 1990-2020: global Burden of Disease Study. Lancet. 1997;349(9064):1498–1504. doi:10.1016/S0140-6736(96)07492-29167458
  • FischerBM, PavliskoE, VoynowJA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis. 2011;6:413–421. doi:10.2147/COPD.S1077021857781
  • PlatakiM, TzortzakiE, RytilaP, DemosthenesM, KoutsopoulosA, SiafakasNM. Apoptotic mechanisms in the pathogenesis of COPD. Int J Chron Obstruct Pulmon Dis. 2006;1(2):161–171.18046893
  • PiquetJ, ChavaillonJM, DavidP, et al. High-risk patients following hospitalisation for an acute exacerbation of COPD. Eur Respir J. 2013;42(4):946–955. doi:10.1183/09031936.0018031223349446
  • DuanY, ZhouM, XiaoJ, et al. Prediction of key genes and miRNAs responsible for loss of muscle force in patients during an acute exacerbation of chronic obstructive pulmonary disease. Int J Mol Med. 2016;38(5):1450–1462. doi:10.3892/ijmm.2016.276128025995
  • HurstJR, VestboJ, AnzuetoA, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363(12):1128–1138. doi:10.1056/NEJMoa090988320843247
  • HalpinDM. Systemic effects of chronic obstructive pulmonary disease. Expert Rev Respir Med. 2007;1(1):75–84. doi:10.1586/17476348.1.1.7520477268
  • WoodheadM, BlasiF, EwigS, et al. Guidelines for the management of adult lower respiratory tract infections–full version. Clin Microbiol Infect. 2011;17(Suppl 6):E1–59. doi:10.1111/j.1469-0691.2011.03672.x
  • KimJ, KimDY, HeoHR, ChoiSS, HongSH, KimWJ. Role of miRNA-181a-2-3p in cadmium-induced inflammatory responses of human bronchial epithelial cells. J Thorac Dis. 2019;11(7):3055–3069. doi:10.21037/jtd.2019.07.5531463135
  • KunT, ZhaoJ, XieJ, WangJ. Jianping, et al. Decreased miR-29b expression is associated with airway inflammation in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2019;316(4):L621–L629. doi:10.1152/ajplung.00436.201830652495
  • JiaQ, ChangJ, HongQ, ZhangJJ, ZhouH, ChenFH. MiR-212-5p exerts a protective effect in chronic obstructive pulmonary disease. Discov Med. 2018;26(144):173–183.30695677
  • EzzieME, CrawfordM, ChoJH, et al. Gene expression networks in COPD: microRNA and mRNA regulation. Thorax. 2012;67(2):122–131. doi:10.1136/thoraxjnl-2011-20008921940491
  • ZhenG, JianfengG, YiL, et al. Mucosal MicroRNAs Expression Profiles before and after Exclusive Enteral Nutrition Therapy in Adult Patients with Crohn’s Disease. Nutrients. 2016;8(8):E519. doi:10.3390/nu808051927556489
  • WangYG, WangT, ShiM, ZhaiB. Long noncoding RNA EPB41L4A-AS2 inhibits hepatocellular carcinoma development by sponging miR-301a-5p and targeting FOXL1. J Exp Clin Cancer Res. 2019;38(1):153. doi:10.1186/s13046-019-1128-930971290
  • WangJ, LiH, QiuS, DongZ, XiangX, ZhangD. MBD2 upregulates miR-301a-5p to induce kidney cell apoptosis during vancomycin-induced AKI. Cell Death Dis. 2017;8(10):e3120.29022913
  • WoodKH, ZhouZ. Emerging Molecular and Biological Functions of MBD2, a Reader of DNA Methylation. Front Genet. 2016;7:93. doi:10.3389/fgene.2016.0009327303433
  • JiaA, WangY, SunW, et al. MBD2 Regulates Th17 Cell Differentiation and Experimental Severe Asthma by Affecting IRF4 Expression. Mediators Inflamm. 2017;2017:6249685. doi:10.1155/2017/624968528808358
  • ZengZ, LiM, ChenJ, et al. Reduced MBD2 expression enhances airway inflammation in bronchial epithelium in COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:703–715. doi:10.2147/COPD.S14859529535511
  • PuchertM, EngeleJ. The peculiarities of the SDF-1/CXCL12 system: in some cells, CXCR4 and CXCR7 sing solos, in others, they sing duets. Cell Tissue Res. 2014;355(2):239–253. doi:10.1007/s00441-013-1747-y24292718
  • IslesHM, HermanKD, RobertsonAL, et al. The CXCL12/CXCR4 Signaling Axis Retains Neutrophils at Inflammatory Sites in Zebrafish. Front Immunol. 2019;10:1784. doi:10.3389/fimmu.2019.0178431417560
  • DupinI, AllardB, OzierA, et al. Blood fibrocytes are recruited during acute exacerbations of chronic obstructive pulmonary disease through a CXCR4-dependent pathway. J Allergy Clin Immunol. 2016;137(4):1036–1042. doi:10.1016/j.jaci.2015.08.04326602164
  • MurdochC, ThornhillMH, FangHY, HearndenV, ColleyHE. CXCL12/CXCR4 axis mediates recruitment of monocytes to oral cancer spheroids. Oral Dis. 2012;18(6):8–18.
  • KokturkN, GurgunA, SenE, et al. The View of the Turkish Thoracic Society on the Report of the GOLD 2017 Global Strategy for the Diagnosis, Management, and Prevention of COPD. Turkish Thoracic Journal. 2017;18(2):57–64. doi:10.5152/TurkThoracJ.2017.06041729404162
  • KimYE, ParkWS, AhnSY, et al. WKYMVm hexapeptide, a strong formyl peptide receptor 2 agonist, attenuates hyperoxia-induced lung injuries in newborn mice. Sci Rep. 2019;9(1):6815. doi:10.1038/s41598-019-43321-431048743
  • ShenW, LiuJ, FanM, et al. MiR-3202 protects smokers from chronic obstructive pulmonary disease through inhibiting FAIM2: an in vivo and in vitro study. Exp Cell Res. 2018;362(2):370–377. doi:10.1016/j.yexcr.2017.11.03829208459
  • PoonJ, CamposM, ForonjyRF, et al. Cigarette smoke exposure reduces leukemia inhibitory factor levels during respiratory syncytial viral infection. Int J Chron Obstruct Pulmon Dis. 2019;14:1305–1315. doi:10.2147/COPD.S19665831417248
  • KrimmerDI, BurgessJK, WooiTK, BlackJL, OliverBG. Matrix proteins from smoke-exposed fibroblasts are pro-proliferative. Am J Respir Cell Mol Biol. 2012;46(1):34–39. doi:10.1165/rcmb.2010-0426OC21778414
  • ZhouY, HeX, ChenY, HuangY, WuL, HeJ. Exendin-4 attenuates cardiac hypertrophy via AMPK/mTOR signaling pathway activation. Biochem Biophys Res Commun. 2015;468(1–2):394–399. doi:10.1016/j.bbrc.2015.09.17926519882
  • BrackeKR, MestdaghP. MicroRNAs as future therapeutic targets?in COPD? Eur Respir J. 2017;49(5):1700431. doi:10.1183/13993003.00431-201728546263
  • RaoX, ZhongJ, ZhangS, et al. Loss of methyl-CpG-binding domain protein 2 enhances endothelial angiogenesis and protects mice against hind-limb ischemic injury. Circulation. 2011;123(25):2964–2974. doi:10.1161/CIRCULATIONAHA.110.96640821670230
  • BaladaE, Ordi-RosJ, Serrano-AcedoS, Martinez-LostaoL, Vilardell-TarrésM. Transcript overexpression of the MBD2 and MBD4 genes in CD4+ T cells from systemic lupus erythematosus patients. J Leukoc Biol. 2007;81(6):1609–1616. doi:10.1189/jlb.010706417360956
  • ZhongJ, YuQ, YangP, et al. MBD2 regulates TH17 differentiation and experimental autoimmune encephalomyelitis by controlling the homeostasis of T-bet/Hlx axis. J Autoimmun. 2014;53:95–104. doi:10.1016/j.jaut.2014.05.00624934598
  • ZhangJ, BaiC. The Significance of Serum Interleukin-8 in Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Tanaffos. 2018;17(1):13–21.30116274
  • WarwickG, ThomasPS, YatesDH. Non-invasive biomarkers in exacerbations of obstructive lung disease. Respirology. 2013;18(5):874–884. doi:10.1111/resp.1208923521049
  • WangCH, HuangCD, LinHC, et al. Increased circulating fibrocytes in asthma with chronic airflow obstruction. Am J Respir Crit Care Med. 2008;178(6):583–591. doi:10.1164/rccm.200710-1557OC18583572
  • MoellerA, GilpinSE, AskK, et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;179(7):588–594. doi:10.1164/rccm.200810-1534OC19151190
  • WangCH, PundeTH, HuangCD, et al. Fibrocyte trafficking in patients with chronic obstructive asthma and during an acute asthma exacerbation. J Allergy Clin Immunol. 2015;135(5):1154–1162e1151-1155. doi:10.1016/j.jaci.2014.09.011
  • TourkinaE, OatesJ, HofbauerA. Caveolin-1 regulates CXCR4/CXCL12-dependent monocyte recruitment in scleroderma patients and in a murine model of interstitial lung disease. Clin Exp Rheumatol. 2010;28(5):S79–S80.20868576
  • DupinI, ThumerelM, MauratE, et al. Fibrocyte accumulation in the airway walls of COPD patients. Eur Respir J. 2019;54(3):3. doi:10.1183/13993003.02173-2018
  • TianY, YinH, DengX, TangB, RenX, JiangT. CXCL12 induces migration of oligodendrocyte precursor cells through the CXCR4activated MEK/ERK and PI3K/AKT pathways. Mol Med Rep. 2018;18(5):4374–4380.30221695