119
Views
6
CrossRef citations to date
0
Altmetric
Review

The Underlying Role of Mitophagy in Different Regulatory Mechanisms of Chronic Obstructive Pulmonary Disease

ORCID Icon, & ORCID Icon
Pages 2167-2177 | Published online: 15 Sep 2020

References

  • Dal-RéR. Worldwide behavioral research on major global causes of mortality. Health Educ Behav. 2011;38(5):433 440.21558465
  • ArayaJ, CambierS, MarkovicsJA, et al. Squamous metaplasia amplifies pathologic epithelial-mesenchymal interactions in COPD patients. J Clin Invest. 2007;117(11):3551 3562.17965775
  • ItoS, ArayaJ, KuritaY, et al. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy. 2015;11(3):547–559.25714760
  • ArayaJ, TsubouchiK, SatoN, et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019;15(3):510–526.30290714
  • BuluaAC, SimonA, MaddipatiR, et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med. 2011;208(3):519–533.21282379
  • MinutoliL, PuzzoloD, RinaldiM, et al. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/ reperfusion injury. Oxid Med Cell Longev. 2016;2016:2183026.27127546
  • ParkJ, ChoiH, MinJS, et al. Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem. 2013;127(2):221 232.23815397
  • YueL, YaoH. Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. Br J Pharmacol. 2016;173(15):2305–2318.27189175
  • YouleRJ, NarendraDP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12(1):9–14.21179058
  • HoffmannRF, ZarrintanS, BrandenburgSM, et al. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Respir Res. 2013;14(1):97.24088173
  • BallwegK, MutzeK, KonigshoffM, et al. Cigarette smoke extract affects mitochondrial function in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2014;307(11):L895–L907.25326581
  • AhmadT, SundarIK, LernerCA, et al. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J. 2015;29(7):2912–2929.25792665
  • AghapourM, RemelsAHV, PouwelsSD, et al. Mitochondria: at the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2020;318(1):L149–L164.31693390
  • Montava-GarrigaL, GanleyIG. Outstanding questions in mitophagy: what we do and do not know. J Mol Biol. 2020;432(1):206–230.31299243
  • JinHS, SuhHW, KimSJ, et al. Mitochondrial control of innate immunity and inflammation. Immune Netw. 2017;17(2):77–88.28458619
  • MohantyA, Tiwari-PandeyR, PandeyNR. Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response. J Cell Commun Signal. 2019;13(3):303–318.30719617
  • MizumuraK, CloonanSM, NakahiraK, et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest. 2014;124(9):3987–4003.25083992
  • Antico ArciuchVG, ElgueroME, PoderosoJJ, et al. Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal. 2012;16(10):1150–1180.21967640
  • YakesFM, Van HoutenB. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A. 1997;94(2):514–519.9012815
  • KujothGC, HionaA, PughTD, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309(5733):481–484.16020738
  • BolisettyS, JaimesEA. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci. 2013;14(3):6306–6344.23528859
  • TrianT, BenardG, BegueretH, et al. Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma. J Exp Med. 2007;204(13):3173–3181.18056286
  • ReddyPH. Mitochondrial medicine for aging and neurodegenerative diseases. Neuromolecular Med. 2008;10(4):291–315.18566920
  • FrankS, GaumeB, Bergmann-LeitnerES, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell. 2001;1(4):515–525.11703942
  • ZemirliN, MorelE, MolinoD. Mitochondrial dynamics in basal and stressful conditions. Int J Mol Sci. 2018;19(2):E564.29438347
  • YouleRJ, van der BliekAM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062–1065.22936770
  • EhsesS, RaschkeI, MancusoG, et al. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol. 2009;187(7):1023–1036.20038678
  • HaraH, ArayaJ, ItoS, et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am J Physiol Lung Cell Mol Physiol. 2013;305(10):L737–L746.24056969
  • van der ToornM, RezayatD, KauffmanHF, et al. Lipid-soluble components in cigarette smoke induce mitochondrial production of reactive oxygen species in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2009;297(1):L109–L114.19411310
  • AgarwalAR, YinF, CadenasE. Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells. Am J Respir Cell Mol Biol. 2014;51(2):284–293.24625219
  • CloonanSM, ChoiAM. Mitochondria in lung disease. J Clin Invest. 2016;126(3):809–820.26928034
  • KosmiderB, LinCR, KarimL, et al. Mitochondrial dysfunction in human primary alveolar type II cells in emphysema. EBioMedicine. 2019;46:305–316.31383554
  • MalinskaD, SzymańskiJ, Patalas-KrawczykP, et al. Assessment of mitochondrial function following short- and long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product and reference cigarettes. Food Chem Toxicol. 2018;115:1–12.29448087
  • ZhangZ, ChengX, YueL, et al. Molecular pathogenesis in chronic obstructive pulmonary disease and therapeutic potential by targeting AMP-activated protein kinase. J Cell Physiol. 2018;233(3):1999–2006.28160496
  • HaraH, KuwanoK, ArayaJ. Mitochondrial quality control in COPD and IPF. Cells. 2018;7(8):E86.30042371
  • SummerR, ShaghaghiH, SchrinerD, et al. Activation of the mTORC1/PGC-1 axis promotes mitochondrial biogenesis and induces cellular senescence in the lung epithelium. Am J Physiol Lung Cell Mol Physiol. 2019;316(6):L1049–L1060.30892080
  • XiaoB, DengX, LimGGY, et al. Superoxide drives progression of Parkin/PINK1-dependent mitophagy following translocation of parkin to mitochondria. Cell Death Dis. 2017;8(10):e3097.29022898
  • López-ArmadaMJ, Riveiro-NaveiraRR, Vaamonde-GarcíaC, et al. Mitochondrial dysfunction and the inflammatory response. Mitochondrion. 2013;13(2):106–118.23333405
  • GoldkornT, FilostoS. Lung injury and cancer: mechanistic insights into ceramide and EGFR signaling under cigarette smoke. Am J Respir Cell Mol Biol. 2010;43(3):259–268.20525802
  • JiangY, WangX, HuD. Mitochondrial alterations during oxidative stress in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;13(12):1153–1162.
  • EmreY, HurtaudC, NübelT, et al. Mitochondria contribute to LPS-induced MAPK activation via uncoupling protein UCP2 in macrophages. Biochem J. 2007;402(2):271–278.17073824
  • TalMC, SasaiM, LeeHK, et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci U S A. 2009;106(8):2770–2775.19196953
  • ZhouR, YazdiAS, MenuP, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–225.21124315
  • BoursMJ, DagneliePC, GiulianiAL, et al. P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation. Front Biosci. 2011;3:1443–1456.
  • CauwelsA, RoggeE, VandendriesscheB, et al. Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death Dis. 2014;5:e1102.24603330
  • KeppO, GalluzziL, KroemerG. Mitochondrial control of the NLRP3 inflammasome. Nat Immunol. 2011;12(3):199–200.21321591
  • OkaT, HikosoS, YamaguchiO, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485(7397):251–255.22535248
  • ZhongZ, UmemuraA, Sanchez-LopezE, et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell. 2016;164(5):896–910.26919428
  • AllamR, LawlorKE, YuEC, et al. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep. 2014;15(9):982–990.24990442
  • YangK, HuangR, FujihiraH, et al. N-glycanase NGLY1 regulates mitochondrial homeostasis and inflammation through NRF1. J Exp Med. 2018;215(10):2600–2616.30135079
  • HerreroMT, EstradaC, MaatoukL, et al. Inflammation in parkinson’s disease: role of glucocorticoids. Front Neuroanat. 2015;9:32.25883554
  • SliterDA, MartinezJ, HaoL, et al. Parkin and PINK1 mitigate STI NG-induced inflammation. Nature. 2018;561(7722):258–262.30135585
  • MannamP, RauniyarN, LamTT, et al. MKK3 influences mitophagy and is involved in cigarette smoke-induced inflammation. Free Radic Biol Med. 2016;101:102–115.27717867
  • SrivastavaA, McGinnissJ, WongY, et al. MKK3 deletion improves mitochondrial quality. Free Radic Biol Med. 2015;87:373–384.26119780
  • MannamP, ShinnAS, SrivastavaA, et al. MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2014;306(7):L604–L619.24487387
  • MannamP, ZhangX, ShanP, et al. Endothelial MKK3 is a critical mediator of lethal murine endotoxemia and acute lung injury. J Immunol. 2013;190(3):1264–1275.23275604
  • BraticA, LarssonNG. The role of mitochondria in aging. J Clin Invest. 2013;123(3):951–957.23454757
  • BirchJ, BarnesPJ, PassosJF. Mitochondria, telomeres and cell senescence: implications for lung ageing and disease. Pharmacol Ther. 2018;183:34–49.28987319
  • SinghD, AgustiA, AnzuetoA, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019. Eur Respir J. 2019;53(5):1900164.30846476
  • RocksteinM, BrandtKF. Enzyme changes in flight muscle correlated with aging and flight ability in the male housefly. Science. 1963;139(3559):1049–1051.13974590
  • PetersenKF, BefroyD, DufourS, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140–1142.12750520
  • TrifunovicA, WredenbergA, FalkenbergM, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429(6990):417–423.15164064
  • RuasJL, WhiteJP, RaoRR, et al. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell. 2012;151(6):1319–1331.23217713
  • AustinS, St-PierreJ. PGC1α and mitochondrial metabolism–emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci. 2012;125(Pt 21):4963–4971.23277535
  • WenzT, RossiSG, RotundoRL, et al. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A. 2009;106(48):20405–20410.19918075
  • KaplonJ, ZhengL, MeisslK, et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature. 2013;498(7452):109–112.23685455
  • MathiasRA, GrecoTM, ObersteinA, et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell. 2014;159(7):1615–1625.25525879
  • FanJ, ShanC, KangHB, et al. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol Cell. 2014;53(4):534–548.24486017
  • DurcanTM, FonEA. The three ‘P’s of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 2015;29(10):989–999.25995186
  • GreeneJC, WhitworthAJ, KuoI, et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A. 2003;100(7):4078–4083.12642658
  • RanaA, ReraM, WalkerDW. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci U S A. 2013;110(21):8638–8643.23650379
  • ThomasRE, AndrewsLA, BurmanJL, et al. PINK1-parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet. 2014;10(5):e1004279.24874806
  • QuirósPM, LangerT, López-OtínC. New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol. 2015;16(6):345–359.25970558
  • BarnesPJ, BakerJ, DonnellyLE. Cellular senescence as a mechanism and target in chronic lung diseases. Am J Respir Crit Care Med. 2019;200(5):556–564.30860857
  • YaoH, ChungS, HwangJW, et al. SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest. 2012;122(6):2032–2045.22546858
  • HagenbuchnerJ, AusserlechnerMJ. Mitochondria and FOXO3: breath or die. Front Physiol. 2013;4:147.23801966
  • MizumuraK, MaruokaS, ShimizuT, et al. Autophagy, selective autophagy, and necroptosis in COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:3165–3172.30349225
  • PasparakisM, VandenabeeleP. Necroptosis and its role in inflammation. Nature. 2015;517(7534):311–320.25592536
  • ChoYS, ChallaS, MoquinD, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus- induced inflammation. Cell. 2009;137(6):1112–1123.19524513
  • HeS, WangL, MiaoL, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009;137(6):1100–1111.19524512
  • ZhangDW, ShaoJ, LinJ, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009;325(5938):332–336.19498109
  • SchweichelJU, MerkerHJ. The morphology of various types of cell death in prenatal tissues. Teratology. 1973;7(3):253–266.4807128
  • KroemerG, LevineB. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008;9(12):1004–1010.18971948
  • BonapaceL, BornhauserBC, SchmitzM, et al. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J Clin Invest. 2010;120(4):1310–1323.20200450
  • KhanMJ, Rizwan AlamM, Waldeck-WeiermairM, et al. Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells. J Biol Chem. 2012;287(25):21110–21120.22556413
  • MizumuraK, JusticeMJ, SchweitzerKS, et al. Sphingolipid regulation of lung epithelial cell mitophagy and necroptosis during cigarette smoke exposure. FASEB J. 2018;32(4):1880–1890.29196503
  • EklöfJ, SørensenR, IngebrigtsenTS, et al. Pseudomonas aeruginosa and risk of death and exacerbations in patients with chronic obstructive pulmonary disease: an observational cohort study of 22 053 patients. Clin Microbiol Infect. 2020;26(2):227–234.31238116
  • KangR, ZengL, XieY, et al. A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis. Autophagy. 2016;12(12):2374–2385.27754761
  • PiquereauJ, GodinR, DeschênesS, et al. Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy. 2013;9(11):1837–1851.24121678
  • YoshizumiT, IchinoheT, SasakiO, et al. Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nat Commun. 2014;5:4713.25140902
  • ZhangX, YuanD, SunQ, et al. Calcium/calmodulin-dependent protein kinase regulates the PINK1/Parkin and DJ-1 pathways of mitophagy during sepsis. FASEB J. 2017;31(10):4382–4395.28615325
  • ZhouJ, YangR, ZhangZ, et al. Mitochondrial protein PINK1 positively regulates RLR signaling. Front Immunol. 2019;10:1069.31139191
  • MatheoudD, CannonT, VoisinA, et al. Intestinal infection triggers parkinson’s disease-like symptoms in Pink1-/- mice. Nature. 2019;571(7766):565–569.31316206
  • ZhaoC, ZhaoW. TANK-binding kinase 1 as a novel therapeutic target for viral diseases. Expert Opin Ther Targets. 2019;23(5):437–446.30932713
  • ZachariM, GudmundssonSR, LiZ, et al. Selective autophagy of mitochondria on a ubiquitin-endoplasmic-reticulum platform. Dev Cell. 2019;50(5):627–643.e5.31353311
  • RichterB, SliterDA, HerhausL, et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A. 2016;113(15):4039–4044.27035970
  • ZhangQ, KuangH, ChenC, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16(5):458–466.25799126
  • LazarouM, SliterDA, KaneLA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524(7565):309–314.26266977
  • MohamudY, QuJ, XueYC, et al. CALCOCO2/NDP52 and SQSTM1/p62 differentially regulate coxsackievirus B3 propagation. Cell Death Differ. 2019;26(6):1062–1076.30154446
  • ZhangR, VarelaM, VallentgoedW, et al. The selective autophagy receptors optineurin and p62 are both required for zebrafish host resistance to mycobacterial infection. PLoS Pathog. 2019;15(2):e1007329.30818338
  • ShiJ, WongJ, PiesikP, et al. Cleavage of sequestosome 1/p62 by an enteroviral protease results in disrupted selective autophagy and impaired NFKB signaling. Autophagy. 2013;9(10):1591–1603.23989536
  • SinJ, McIntyreL, StotlandA, et al. Coxsackievirus B escapes the infected cell in ejected mitophagosomes. J Virol. 2017;91(24):e01347–e01417.28978702
  • DuY, DuanT, FengY, et al. LRRC25 inhibits type I IFN signaling by targeting ISG15-associated RIG-I for autophagic degradation. EMBO J. 2018;37(3):351–366.29288164
  • XianH, YangS, JinS, et al. LRRC59 modulates type I interferon signaling by restraining the SQSTM1/p62-mediated autophagic degradation of pattern recognition receptor DDX58/RIG-I. Autophagy. 2020;16(3):408–418.31068071
  • TschurtschenthalerM, AdolphTE. The selective autophagy receptor optineurin in crohn’s disease. Front Immunol. 2018;9:766.29692785
  • ChewTS, O’SheaNR, SewellGW, et al. Optineurin deficiency in mice contributes to impaired cytokine secretion and neutrophil recruitment in bacteria-driven colitis. Dis Model Mech. 2015;8(8):817–829.26044960
  • ZhangY, YaoY, QiuX, et al. Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing. Nat Immunol. 2019;20(4):433–446.30804553