114
Views
6
CrossRef citations to date
0
Altmetric
Original Research

The Predictive Value of microRNA-134 and microRNA-1233 for the Early Diagnosis of Acute Exacerbation of Chronic Obstructive Pulmonary Disease with Acute Pulmonary Embolism

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 2495-2503 | Published online: 15 Oct 2020

References

  • GOLD. Global strategy for the diagnosis, management and prevention of COPD, global initiative for Chronic Obstructive Lung Disease (GOLD); 2019 Available from: http://guide.medlive.cn/guideline/19229. Accessed 102, 2020.
  • DengHY, LiG, LuoJ, et al. MicroRNAs are novel non-invasive diagnostic biomarkers for pulmonary embolism: a meta-analysis. J Thorac Dis. 2016;(12):3580‐3587. doi:10.21037/jtd.2016.12.98
  • Rivera-LebronB, McDanielM, AhrarK, et al. Diagnosis, treatment and follow up of acute pulmonary embolism: consensus practice from the PERT consortium. Clin Appl Thromb Hemost. 2019;25:1076029619853037. doi:10.1177/107602961985303731185730
  • ZhouX, WenW, ShanX, et al. MiR-28-3p as a potential plasma marker in diagnosis of pulmonary embolism. Thromb Res. 2016;138:91‐95. doi:10.1016/j.thromres.2015.12.006
  • DoumaRA, KamphuisenPW, BüllerHR. Acute pulmonary embolism. Part 1: epidemiology and diagnosis. Nat Rev Cardiol. 2010;7(10):585‐596. doi:10.1038/nrcardio.2010.106
  • FurlanA, AghayevA, ChangCC, et al. Short-term mortality in acute pulmonary embolism: clot burden and signs of right heart dysfunction at CT pulmonary angiography. Radiology. 2012;265(1):283‐293. doi:10.1148/radiol.12110802
  • JiménezD, BikdeliB, QuezadaA, et al. Hospital volume and outcomes for acute pulmonary embolism: multinational population based cohort study. BMJ. 2019;366:l4416. doi:10.1136/bmj.l441631358508
  • CaoYQ, DongLX, CaoJ. Pulmonary embolism in patients with acute exacerbation of chronic obstructive pulmonary disease. Chin Med J (Engl). 2018;131(14):1732‐1737. doi:10.4103/0366-6999.235865
  • BertolettiL, QuenetS, MismettiP, et al. Clinical presentation and outcome of venous thromboembolism in COPD. Eur Respir J. 2012;39(4):862‐868. doi:10.1183/09031936.00058811
  • ChenWJ, LinCC, LinCY, et al. Pulmonary embolism in chronic obstructive pulmonary disease: a population-based cohort study. COPD. 2014;11(4):438‐443. doi:10.3109/15412555.2013.813927
  • PourmandA, RobinsonH, Mazer-AmirshahiM, PinesJM. Pulmonary embolism among patients with acute exacerbation of chronic obstructive pulmonary disease: implications for emergency medicine. J Emerg Med. 2018;55(3):339‐346. doi:10.1016/j.jemermed.2018.05.026
  • MorroneD, MorroneV. Acute pulmonary embolism: focus on the clinical picture [published correction appears in Korean Circ J. 2018 Jul;48(7):661–663]. Korean Circ J. 2018;48(5):365‐381. doi:10.4070/kcj.2017.0314
  • KearonC. Diagnosis of pulmonary embolism. CMAJ. 2003;168(2):183‐194.
  • TakT, KarturiS, SharmaU, EcksteinL, PoteruchaJT, SandovalY. Acute pulmonary embolism: contemporary approach to diagnosis, risk-stratification, and management. Int J Angiol. 2019;28(2):100‐111. doi:10.1055/s-0039-1692636
  • WollerSC, StevensSM, AdamsDM, et al. Assessment of the safety and efficiency of using an age-adjusted D-dimer threshold to exclude suspected pulmonary embolism. Chest. 2014;146:1444–1451. doi:10.1378/chest.13-238624831769
  • AkpinarEE, HoşgünD, DoğanayB, AtaçGK, GülhanM. Should the cut-off value of D-dimer be elevated to exclude pulmonary embolism in acute exacerbation of COPD? J Thorac Dis. 2013;5(4):430‐434. doi:10.3978/j.issn.2072-1439.2013.07.34
  • MaY, YanS, ZhouL, YuanDT. Competitive assessments of pulmonary embolism: noninvasiveness versus the golden standard. Vascular. 2016;24(2):217‐224. doi:10.1177/1708538115589893
  • den ExterPL, van der HulleT, KlokFA, HuismanMV. Advances in the diagnosis and management of acute pulmonary embolism. Thromb Res. 2014;133(Suppl 2):S10‐S16. doi:10.1016/S0049-3848(14)50002-3
  • ChienCH, ShihFC, ChenCY, ChenCH, WuWL, MakCW. Unenhanced multidetector computed tomography findings in acute central pulmonary embolism. BMC Med Imaging. 2019;19(1):65. doi:10.1186/s12880-019-0364-y31412797
  • LukL, SteinmanJ, NewhouseJH. Intravenous contrast-induced nephropathy-the rise and fall of a threatening idea. Adv Chronic Kidney Dis. 2017;24(3):169‐175. doi:10.1053/j.ackd.2017.03.001
  • HeF, LvP, ZhaoX, et al. Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction. Mol Cell Biochem. 2014;394(1–2):137‐144. doi:10.1007/s11010-014-2089-0
  • ThibordF, MunschG, PerretC, et al. Bayesian network analysis of plasma microRNA sequencing data in patients with venous thrombosis. Eur Heart J Suppl. 2020;22(SupplC):C34‐C45. doi:10.1093/eurheartj/suaa008
  • SzymczakI, WieczfinskaJ, PawliczakR. Molecular background of miRNA role in asthma and COPD: an updated insight. Biomed Res Int. 2016;2016:7802521. doi:10.1155/2016/780252127376086
  • SayedD, AbdellatifM. MicroRNAs in development and disease. Physiol Rev. 2011;91(3):827‐887. doi:10.1152/physrev.00006.2010
  • HobbsBD, TantisiraKG. MicroRNAs in COPD: small molecules with big potential. Eur Respir J. 2019;53(4):1900515. doi:10.1183/13993003.00515-201931023868
  • XiaoJ, JingZC, EllinorPT, et al. MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism. J Transl Med. 2011;9:159. doi:10.1186/1479-5876-9-15921943159
  • LiuT, KangJ, LiuF. Plasma levels of microRNA-221 (miR-221) are increased in patients with acute pulmonary embolism. Med Sci Monit. 2018;24:8621‐8626. doi:10.12659/MSM.910893
  • KesslerT, ErdmannJ, VilneB, et al. Serum microRNA-1233 is a specific biomarker for diagnosing acute pulmonary embolism. J Transl Med. 2016;14(1):120. doi:10.1186/s12967-016-0886-927150028
  • KonstantinidesSV, TorbickiA, AgnelliG, et al. Corrigendum to: 2014 ESC Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2015;36. doi:2642.doi:10.1093/eurheartj/ehu479
  • IshaayaE, TapsonVF. Advances in the diagnosis of acute pulmonary embolism. F1000Res. 2020;9:F1000Faculty Rev–44. doi:10.12688/f1000research.21347.1
  • HargettCW, TapsonVF. Clinical probability and D-dimer testing: how should we use them in clinical practice?Semin Respir Crit Care Med. 2008;29(1):15‐24. doi:10.1055/s-2008-1047559
  • QinJ, LiangH, ShiD, et al. A panel of microRNAs as a new biomarkers for the detection of deep vein thrombosis. J Thromb Thrombolysis. 2015;39(2):215‐221. doi:10.1007/s11239-014-1131-0
  • HembromAA, SrivastavaS, GargI, KumarB. MicroRNAs in venous thrombo-embolism. Clin Chim Acta. 2020;504:66‐72. doi:10.1016/j.cca.2020.01.034
  • ChenYW, LeungJM, SinDD, EickelbergO. A systematic review of diagnostic biomarkers of COPD exacerbation. PLoS One. 2016;11(7):e0158843. doi:10.1371/journal.pone.015884327434033
  • XuJ, ZhaoJ, EvanG, XiaoC, ChengY, XiaoJ. Circulating microRNAs: novel biomarkers for cardiovascular diseases. J Mol Med (Berl). 2012;90(8):865‐875. doi:10.1007/s00109-011-0840-5
  • CarmonaP, MolinaM, ToledanoA. Blood-based biomarkers of Alzheimer’s disease: diagnostic algorithms and new technologies. Curr Alzheimer Res. 2016;13(4):450‐464. doi:10.2174/1567205013666151116130301
  • DanjumaMI, SajidJ, FatimaH, ElzoukiAN. Novel biomarkers for potential risk stratification of drug induced liver injury (DILI): a narrative perspective on current trends. Medicine (Baltimore). 2019;98(50):e18322. doi:10.1097/MD.000000000001832231852121
  • MüllerS, JankeF, DietzS, SültmannH. Circulating MicroRNAs as potential biomarkers for lung cancer. Recent Results Cancer Res. 2020;215:299‐318. doi:10.1007/978-3-030-26439-0_16
  • YaoZY, ChenWB, ShaoSS, et al. Role of exosome-associated microRNA in diagnostic and therapeutic applications to metabolic disorders. J Zhejiang Univ Sci B. 2018;19(3):183‐198. doi:10.1631/jzus.B1600490
  • FungEC, ButtAN, EastwoodJ, SwaminathanR, SodiR. Circulating microRNA in cardiovascular disease. Adv Clin Chem. 2019;91:99‐122. doi:10.1016/bs.acc.2019.03.003
  • WulfkenLM, MoritzR, OhlmannC, et al. MicroRNAs in renal cell carcinoma: diagnostic implications of serum miR-1233 levels. PLoS One. 2011;6(9):e25787. doi:10.1371/journal.pone.002578721984948
  • PanJY, ZhangF, SunCC, et al. miR-134: a human cancer suppressor? Mol Ther Nucleic Acids. 2017;6:140‐149. doi:10.1016/j.omtn.2016.11.003
  • WangWW, ZhaoZH, WangL, et al. MicroRNA-134 prevents the progression of esophageal squamous cell carcinoma via the PLXNA1-mediated MAPK signalling pathway [published correction appears in EBioMedicine. 2020 May;55:102772]. EBioMedicine. 2019;46:66‐78. doi:10.1016/j.ebiom.2019.07
  • FujitaY, KosakaN, ArayaJ, KuwanoK, OchiyaT. Extracellular vesicles in lung microenvironment and pathogenesis. Trends Mol Med. 2015;21(9):533‐542. doi:10.1016/j.molmed.2015.07.004
  • KulshreshthaA, AhmadT, AgrawalA, GhoshB. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation. J Allergy Clin Immunol. 2013;131(4):1194–1203.e14. doi:10.1016/j.jaci.2012.12.156523414598
  • Nolte-’t HoenEN, BuermansHP, WaasdorpM, StoorvogelW, WaubenMH, ‘t HoenPA. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012;40(18):9272‐9285. doi:10.1093/nar/gks658