83
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Tissue-Specific Ultra-Short Telomeres in Chronic Obstructive Pulmonary Disease

, ORCID Icon, ORCID Icon, &
Pages 2751-2757 | Published online: 30 Oct 2020

References

  • StrangeC. Airway disease in alpha-1 antitrypsin deficiency. COPD. 2013;1:68–73. doi:10.3109/15412555.2013.764404
  • HoggJC, ChuF, UtokaparchS, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:2645–2653. doi:10.1056/NEJMoa03215815215480
  • McDonoughJE, YuanR, SuzukiM, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365:1567–1575. doi:10.1056/NEJMoa110695522029978
  • HurstJR, VestboJ, AnzuetoA, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363:1128–1138. doi:10.1056/NEJMoa090988320843247
  • HassettDJ, BorchersMT, PanosRJ. Chronic obstructive pulmonary disease (COPD): evaluation from clinical, immunological and bacterial pathogenesis perspectives. J Microbiol. 2014;52:211–226.24585052
  • DomejW, OettlK. Oxidative stress and free radicals in COPD – implications and relevance for treatment. Int J Chron Obstruct Pulmon Dis. 2014;9:1207–1224. doi:10.2147/COPD.S5122625378921
  • AoshibaK, NagaiA. Senescence hypothesis for the pathogenetic mechanism of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6:596–601. doi:10.1513/pats.200904-017RM19934355
  • AoshibaK, ZhouF, TsujiT, et al. DNA damage as a molecular link in the pathogenesis of COPD in smokers. Eur Respir J. 2012;39:1368–1376. doi:10.1183/09031936.0005021122267761
  • NtritsosG, FranekJ, BelbasisL, et al. Gender-specific estimates of COPD prevalence: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis. 2018;13:1507–1514. doi:10.2147/COPD.S14639029785100
  • PostmaDS, BushA, Van den BergeM. Risk factors and early origins of chronic obstructive pulmonary disease. Lancet. 2015;385:899–909. doi:10.1016/S0140-6736(14)60446-325123778
  • Puig-VilanovaE, RodriguezDA, LloretaJ, et al. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free Radic Biol Med. 2015;79:91–108. doi:10.1016/j.freeradbiomed.2014.11.00625464271
  • VlahosR, BozinovskiS. Role of alveolar macrophages in chronic obstructive pulmonary disease. Front Immunol. 2014;5:435. doi:10.3389/fimmu.2014.0043525309536
  • HodgeS, HodgeG, HolmesM, et al. Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation. Eur Respir J. 2005;25:447–454. doi:10.1183/09031936.05.0007760415738287
  • PodowskiM, CalviCL, CheadleC, et al. Complex integration of matrix, oxidative stress, and apoptosis in genetic emphysema. Am J Pathol. 2009;175:84–96. doi:10.2353/ajpath.2009.08087019541933
  • MercadoN, ItoK, BarnesPJ. Accelerated ageing of the lung in COPD: new concepts. Thorax. 2015;70:482–489. doi:10.1136/thoraxjnl-2014-20608425739910
  • SteerSE, WilliamsFM, KatoB, et al. Reduced telomere length in rheumatoid arthritis is independent of disease activity and duration. Ann Rheum Dis. 2007;66:476–480. doi:10.1136/ard.2006.05918817114192
  • PalmW, de LangeT. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42:301–334. doi:10.1146/annurev.genet.41.110306.13035018680434
  • ShayJW, WrightWE. Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis. 2005;26:867–874. doi:10.1093/carcin/bgh29615471900
  • AmsellemV, Gary-BoboG, MarcosE, et al. Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;184:1358–1366. doi:10.1164/rccm.201105-0802OC21885626
  • HarboM, DelaisseJM, Kjaersgaard-AndersenP, et al. The relationship between ultra-short telomeres, aging of articular cartilage and the development of human hip osteoarthritis. Mech Ageing Dev. 2013;134:367–372. doi:10.1016/j.mad.2013.07.00223872258
  • BendixL, HornPB, JensenUB, et al. The load of short telomeres, estimated by a new method, universal STELA, correlates with number of senescent cells. Aging Cell. 2010;9:383–397. doi:10.1111/j.1474-9726.2010.00568.x20331440
  • SerakinciN, CagsinH, MavisM. Use of U-STELA for accurate measurement of extremely short telomeres In: TurksenK, editor. Stem Cells and Aging, Methods in Molecular Biology. New York: Humana; 2019:217–224.
  • KarlohM, MayerAF, MauriciR, et al. The COPD assessment test: what do we know so far? A systematic review and meta-analysis about clinical outcomes prediction and classification of patients into GOLD stages. Chest. 2016;149:413–425. doi:10.1378/chest.15-175226513112
  • MuiTSY, ManJM, McElhaneyJE, et al. Telomere length and chronic obstructive pulmonary disease: evidence of accelerated aging. J Am Geriatr Soc. 2009;57:2372–2374. doi:10.1111/j.1532-5415.2009.02589.x20122000
  • LeeJ, SandfordAJ, ConnettJE, et al. The relationship between telomere length and mortality in chronic obstructive pulmonary Disease (COPD). PLoS One. 2012;7:e35567. doi:10.1371/journal.pone.003556722558169
  • VidacekNS, CukusicA, IvankovicM, et al. Abrupt telomere shortening in normal human fibroblasts. Exp Gerontol. 2010;45:235–242. doi:10.1016/j.exger.2010.01.00920080170
  • YamadaM, FujinoN, IchinoseM. Inflammatory responses in the initiation of lung repair and regeneration: their role in stimulating lung resident stem cells. Inflamm Regen. 2016;36:15. doi:10.1186/s41232-016-0020-729259688