88
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Systemic Cytokine Profiles of CD4+ T Lymphocytes Correlate with Clinical Features and Functional Status in Stable COPD

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2931-2940 | Published online: 13 Nov 2020

References

  • IheanachoI, ZhangS, KingD, RizzoM, IsmailaAS. Economic burden of Chronic Obstructive Pulmonary Disease (COPD): a systematic literature review. Int J Chron Obstruct Pulmon Dis. 2020;15:439–460. doi:10.2147/COPD.S23494232161455
  • GOLD 2020. Global strategy for diagnosis, management and prevention of COPD- 2020 UPDATE; 2020 Available from: www.goldcopd.org. Accessed 422, 2020.
  • Halper-StrombergE, YunJH, ParkerMM, et al. Systemic markers of adaptive and innate immunity are associated with chronic obstructive pulmonary disease severity and spirometric disease progression. Am J Respir Cell Mol Biol. 2018;58(4):500–509. doi:10.1165/rcmb.2017-0373OC29206476
  • AgarwalAR, KadamS, BrahmeA, et al. Systemic immuno-metabolic alterations in chronic obstructive pulmonary disease (COPD). Respir Res. 2019;20(1):171. doi:10.1186/s12931-019-1139-231362724
  • BarnesPJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16–27. doi:10.1016/j.jaci.2016.05.01127373322
  • BarnesPJ. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2018;18(7):454–466. doi:10.1038/s41577-018-0006-629626211
  • SongY, NigroJ, YuL, et al. Secreted and intracellular cytokines are complementary measures for human monocytes treated with Toll-like receptor agonists. J Immunol Methods. 2019;464:131–137. doi:10.1016/j.jim.2018.11.00330395817
  • SileikieneV, LaurinavicieneA, Lesciute-KrilavicieneD, JurgauskieneL, MalickaiteR, LaurinaviciusA. Levels of CD4+ CD25+ T regulatory cells in bronchial mucosa and peripheral blood of chronic obstructive pulmonary disease indicate involvement of autoimmunity mechanisms. Adv Respir Med. 2019;87(3):159–166. doi:10.5603/ARM.2019.002331282557
  • Mesquita JúniorD, AraújoJAP, CatelanTTT, et al. Sistema imunitário - parte II: fundamentos da resposta imunológica mediada por linfócitos T e B. Rev Bras Reumatol Engl Ed. 2010;50:552–580. doi:10.1590/S0482-50042010000500008
  • GrumelliS, CorryDB, SongL-Z, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med. 2004;1(1):e8. doi:10.1371/journal.pmed.001000815526056
  • Di StefanoA, CaramoriG, GnemmiI, et al. T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin Exp Immunol. 2009;157(2):316–324. doi:10.1111/j.1365-2249.2009.03965.x19604272
  • PaatsMS, BergenIM, HoogstedenHC, van der EerdenMM, HendriksRW. Systemic CD4+ and CD8+ T-cell cytokine profiles correlate with GOLD stage in stable COPD. Eur Respir J. 2012;40(2):330–337. doi:10.1183/09031936.0007961122183488
  • XuW, LiR, SunY. Increased IFN-gamma-producing Th17/Th1 cells and their association with lung function and current smoking status in patients with chronic obstructive pulmonary disease. BMC Pulm Med. 2019;19(1):137. doi:10.1186/s12890-019-0899-231349846
  • SelvarajahS, ToddI, TighePJ, et al. Multiple circulating cytokines are coelevated in chronic obstructive pulmonary disease. Mediators Inflamm. 2016;2016:3604842. doi:10.1155/2016/360484227524865
  • ByunMK, ChoEN, ChangJ, AhnCM, KimHJ. Sarcopenia correlates with systemic inflammation in COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:669–675. doi:10.2147/COPD.S13079028255238
  • FerrariR, CaramLM, FaganelloMM, SanchezFF, TanniSE, GodoyI. Relation between systemic inflammatory markers, peripheral muscle mass, and strength in limb muscles in stable COPD patients. Int J Chron Obstruct Pulmon Dis. 2015;10:1553–1558. doi:10.2147/COPD.S8595426345641
  • NguyenHQ, HertingJR, PikeKC, et al. Symptom profiles and inflammatory markers in moderate to severe COPD. BMC Pulm Med. 2016;16(1):173. doi:10.1186/s12890-016-0330-127914470
  • SharanyaA, CianoM, WithanaS, KempPR, PolkeyMI, SathyapalaSA. Sex differences in COPD-related quadriceps muscle dysfunction and fibre abnormalities. Chron Respir Dis. 2019;16:1479973119843650. doi:10.1177/147997311984365031131626
  • CelliBR, AndersonJA, BrookR, et al. Serum biomarkers and outcomes in patients with moderate COPD: a substudy of the randomised SUMMIT trial. BMJ Open Respir Res. 2019;6(1):e000431. doi:10.1136/bmjresp-2019-000431
  • LeeJS, RosengartMR, KondraguntaV, et al. Inverse association of plasma IL-13 and inflammatory chemokines with lung function impairment in stable COPD: a cross-sectional cohort study. Respir Res. 2007;8(1):64. doi:10.1186/1465-9921-8-6417868461
  • NuñezA, MarrasV, HarlanderM, et al. Association between routine blood biomarkers and clinical phenotypes and exacerbations in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2020;15:681–690. doi:10.2147/COPD.S24072032280207
  • SimpsonJL. Airway inflammation in COPD: is it worth measuring and is it clinically meaningful? Respirology. 2020;25(1):47–48. doi:10.1111/resp.1365631373083
  • StockleyRA, HalpinDMG, CelliBR, SinghD. Chronic obstructive pulmonary disease biomarkers and their interpretation. Am J Respir Crit Care Med. 2019;199(10):1195–1204. doi:10.1164/rccm.201810-1860SO30592902
  • NederJA, AndreoniS, Castelo-FilhoA, NeryLE. Reference values for lung function tests: I. Static volumes. Braz J Med Biol Res. 1999;32:703–717. doi:10.1590/S0100-879X199900060000610412549
  • KovelisD, SegrettiNO, ProbstVS, LareauSC, BrunettoAF, PittaF. Validação do modified pulmonary functional status and dyspnea questionnaire e da escala do medical research council para o uso em pacientes com doença pulmonar obstrutiva crônica no Brasil. J Bras Pneumol. 2008;34:1008–1018. doi:10.1590/S1806-3713200800120000519180335
  • MoreiraGL, PittaF, RamosD, et al. Versão em português do chronic respiratory questionnaire: estudo da validade e reprodutibilidade. J Bras Pneumol. 2009;35:737–744. doi:10.1590/S1806-3713200900080000419750325
  • RamosEM, de Toledo-arrudaAC, FoscoLC, et al. The effects of elastic tubing-based resistance training compared with conventional resistance training in patients with moderate chronic obstructive pulmonary disease: a randomized clinical trial. Clin Rehabil. 2014;28(11):1096–1106. doi:10.1177/026921551452784224647863
  • HollandAE, SpruitMA, TroostersT, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428–1446. doi:10.1183/09031936.0015031425359355
  • MukakaMM. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69–71.23638278
  • BradfordE, JacobsonS, VarastehJ, et al. The value of blood cytokines and chemokines in assessing COPD. Respir Res. 2017;18(1):180. doi:10.1186/s12931-017-0662-229065892
  • SuB, LiuT, FanH, et al. Inflammatory markers and the risk of chronic obstructive pulmonary disease: a systematic review and meta-analysis. PLoS One. 2016;11(4):e0150586–e0150586. doi:10.1371/journal.pone.015058627104349
  • YaoY, ZhouJ, DiaoX, WangS. Association between tumor necrosis factor-α and chronic obstructive pulmonary disease: a systematic review and meta-analysis. Ther Adv Respir Dis. 2019;13:1753466619866096. doi:10.1177/175346661986609631390957
  • SinghS, VermaSK, KumarS, et al. Correlation of severity of chronic obstructive pulmonary disease with potential biomarkers. Immunol Lett. 2018;196:1–10. doi:10.1016/j.imlet.2018.01.00429329680
  • SilvaBSA, LiraFS, RamosD, et al. Severity of COPD and its relationship with IL-10. Cytokine. 2018;106:95–100. doi:10.1016/j.cyto.2017.10.01829108795
  • JiangS, ShanF, ZhangY, JiangL, ChengZ. Increased serum IL-17 and decreased serum IL-10 and IL-35 levels correlate with the progression of COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:2483–2494. doi:10.2147/COPD.S16719230154651
  • AnsariAA, MayneAE. Cytokine analysis by intracellular staining. Methods Mol Med. 2002;72:423–435.12125138
  • VitenbergaZ, PilmaneM, BabjoniševaA. The evaluation of inflammatory, anti-inflammatory and regulatory factors contributing to the pathogenesis of COPD in airways. Pathol Res Pract. 2019;215(1):97–105. doi:10.1016/j.prp.2018.10.02930392917
  • AbbasAK, TrottaE, MarsonA, BluestoneJA. Revisiting IL-2. Biol Therap Prospect. 2018;3(25).
  • BrightlingCE, SahaS, HollinsF. Interleukin-13: prospects for new treatments. Clin Exp Allergy. 2010;40(1):42–49.19878194
  • Le RouzicO, PichavantM, FrealleE, GuillonA, Si-TaharM, GossetP. Th17 cytokines: novel potential therapeutic targets for COPD pathogenesis and exacerbations. Eur Respir J. 2017;50(4).
  • LiaoW, LinJX, LeonardWJ. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol. 2011;23(5):598–604. doi:10.1016/j.coi.2011.08.00321889323
  • KnoblochJ, ChikosiSJ, YanikS, RuppJ, JungckD, KochA. A systemic defect in Toll-like receptor 4 signaling increases lipopolysaccharide-induced suppression of IL-2-dependent T-cell proliferation in COPD. Am J Physiol Lung Cell Mol Physiol. 2016;310(1):L24–39. doi:10.1152/ajplung.00367.201426498252
  • CastaldiPJ, BoueizA, YunJ, et al. Machine learning characterization of COPD subtypes: insights from the COPDGene study. Chest. 2020;157(5):1147–1157. doi:10.1016/j.chest.2019.11.03931887283
  • CorlateanuA, MendezY, WangY, GarnicaRJA, BotnaruV, SiafakasN. Chronic obstructive pulmonary disease and phenotypes: a state-of-the-art. Pulmonology. 2020;26(2):95–100. doi:10.1016/j.pulmoe.2019.10.00631740261
  • CouperKN, BlountDG, RileyEM. IL-10: the master regulator of immunity to infection. J Immunol. 2008;180(9):5771–5777. doi:10.4049/jimmunol.180.9.577118424693
  • MarquisK, DebigaréR, LacasseY, et al. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002;166(6):809–813. doi:10.1164/rccm.210703112231489
  • SwallowEB, ReyesD, HopkinsonNS, et al. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax. 2007;62(2):115–120. doi:10.1136/thx.2006.06202617090575
  • DziurlaR, GaberT, FangradtM, et al. Effects of hypoxia and/or lack of glucose on cellular energy metabolism and cytokine production in stimulated human CD4+ T lymphocytes. Immunol Lett. 2010;131(1):97–105. doi:10.1016/j.imlet.2010.02.00820206208