103
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Circulating miR-1246 in the Progression of Chronic Obstructive Pulmonary Disease (COPD) in Patients from the BODE Cohort

, , , , &
Pages 2727-2737 | Published online: 29 Oct 2020

References

  • Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease (2018 report). Available from: https://goldcopd.org/wp-content/uploads/2017/11/GOLD-2018-v6.0-FINAL-revised-20-Nov_WMS.pdf. Accessed 1128, 2017.
  • John-SchusterG, GünterS, HagerK, et al. Inflammaging increases susceptibility to cigarette smoke-induced COPD. Oncotarget. 2016;7(21):30068–30083. doi:10.18632/oncotarget.402726284585
  • LeeJ, SandfordA, ManP, SinDD. Is the aging process accelerated in chronic obstructive pulmonary disease? Curr Opin Pulm Med. 2011;17(2):90–97. doi:10.1097/MCP.0b013e328341cead21365793
  • SethiS, MahlerDA, MarcusP, et al. Inflammation in COPD: implications for management. Am J Med. 2012;125(12):1162–1170. doi:10.1016/j.amjmed.2012.06.02423164484
  • WuL, FanJ, BelascoJG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A. 2006;103(11):4034–4039. doi:10.1073/pnas.051092810316495412
  • MeisterG. miRNAs get an early start on translational silencing. Cell. 2007;131(1):25–28. doi:10.1016/j.cell.2007.09.02117923084
  • CroceCM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–714. doi:10.1038/nrg263419763153
  • DaiR, AhmedSA. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res. 2011;157(4):163–179. doi:10.1016/j.trsl.2011.01.00721420027
  • RupaniH, Sanchez-ElsnerT, HowarthP. MicroRNAs and respiratory diseases. Eur Respir J. 2013;41(3):695–705. doi:10.1183/09031936.0021201122790917
  • Van PottelbergeGR, MestdaghP, BrackeKR, et al. MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183(7):898–906. doi:10.1164/rccm.201002-0304OC21037022
  • SchembriF, SridharS, PerdomoC, et al. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc Natl Acad Sci USA. 2009;106(7):2319–2324. doi:10.1073/pnas.080638310619168627
  • EzzieME, CrawfordM, ChoJH, et al. Gene expression networks in COPD: microRNA and mRNA regulation. Thorax. 2012;67:122–131. doi:10.1136/thoraxjnl-2011-20008921940491
  • AkbasF, CoskunpinarE, AynaciE, et al. Analysis of serum micro-RNAs as potential biomarker in chronic obstructive pulmonary disease. Exp Lung Res. 2012;38(6):286–294. doi:10.3109/01902148.2012.68908822686440
  • SoedaS, OhyashikiJH, OhtsukiK, et al. Clinical relevance of plasma miR-106b levels in patients with chronic obstructive pulmonary disease. Int J Mol Med. 2013;31(3):533–539. doi:10.3892/ijmm.2013.125123338559
  • GraffJ, PowersL, DicksonA, et al. Cigarette smoking decreases global microRNA expression in human alveolar macrophages. PLoS One. 2012;7(8):e44066. doi:10.1371/journal.pone.004406622952876
  • BanerjeeA, LuettichK. MicroRNAs as potential biomarkers of smoking-related diseases. Biomark Med. 2012;6(5):671–684. doi:10.2217/bmm.12.5023075247
  • XieL, WuM, LinH, et al. An increased ratio of serum miR-21 to miR-181a levels is associated with the early pathogenic process of chronic obstructive pulmonary disease in asymptomatic heavy smokers. Mol Biosyst. 2014;10(5):1072–1081. doi:10.1039/C3MB70564A24556821
  • SatoT, LiuX, NelsonA, et al. Reduced miR-146a increases prostaglandin E 2 in chronic obstructive pulmonary disease fibroblasts. Am J Respir Crit Care Med. 2010;182(8):1020–1029. doi:10.1164/rccm.201001-0055OC20522791
  • CelliBR, CoteC, MarinJM, et al. The body mass index, airflow obstruction, dyspnea, exercise performance (BODE) index in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(10):1005–1012. doi:10.1056/NEJMoa02132214999112
  • ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test [published correction appears in Am J Respir Crit Care Med. 2016 May 15;193(10):1185]. Am J Respir Crit Care Med. 2002;166(1):111–117.12091180
  • American Thoracic Society Statement. Lung function testing: selection of reference values and interpretative strategies. Am Rev Respir Dis. 1991;144(5):1202–1218. doi:10.1164/ajrccm/144.5.12021952453
  • MacintyreN, CrapoRO, ViegiG, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J. 2005;26(4):720–735. doi:10.1183/09031936.05.0003490516204605
  • MahlerDA, WellsCK. Evaluation of clinical methods for rating dyspnea. Chest. 1988;93(3):580–586. doi:10.1378/chest.93.3.5803342669
  • CharlsonM, SzatrowskiTP, PetersonJ, GoldJ. Validation of a combined comorbidity index. J Clin Epidemiol. 1994;47(11):1245–1251. doi:10.1016/0895-4356(94)90129-57722560
  • LynchDA, AustinJH, HoggJC, et al. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the fleischner society. Radiology. 2015;277(1):192–205. doi:10.1148/radiol.201514157925961632
  • KozomaraA, BirgaoanuM, Griffiths-JonesS. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–D162. doi:10.1093/nar/gky114130423142
  • AndersenCL, JensenJL, ØrntoftTF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64(15):5245–5250. doi:10.1158/0008-5472.CAN-04-049615289330
  • LivakKJ, SchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402‐408. doi:10.1006/meth.2001.1262
  • AgarwalV, BellGW, NamJW, BartelDP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005. doi:10.7554/eLife.05005
  • ParaskevopoulouMD, GeorgakilasG, KostoulasN, et al. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013;41(Web Server issue):W169–W173. doi:10.1093/nar/gkt39323680784
  • RaudvereU, KolbergL, KuzminI, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191–W198. doi:10.1093/nar/gkz36931066453
  • AshburnerM, BallCA, BlakeJA, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25(1):25‐29. doi:10.1038/75556
  • MiH, MuruganujanA, EbertD, et al. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419–D426. doi:10.1093/nar/gky103830407594
  • HuberW, CareyV, GentlemanR, et al. Orchestrating high-throughput genomic analysis with bioconductor. Nat Methods. 2015;12(2):115–121. doi:10.1038/nmeth.325225633503
  • StoreyJD, TibshiraniR. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100(16):9440–9445. doi:10.1073/pnas.153050910012883005
  • DangX, QuX, WangW, et al. Bioinformatic analysis of microRNA and mRNA regulation in peripheral blood mononuclear cells of patients with chronic obstructive pulmonary disease. Respir Res. 2017;18(1):4. doi:10.1186/s12931-016-0486-528057018
  • ChenB-B, LiZ-H, GaoS. Circulating miR-146a/b correlates with inflammatory cytokines in COPD and could predict the risk of acute exacerbation COPD. Medicine (Baltimore). 2018;97(7):e9820. doi:10.1097/MD.000000000000982029443743
  • ChristensonSA, BrandsmaCA, CampbellJD, et al. miR-638 regulates gene expression networks associated with emphysematous lung destruction. Genome Med. 2013;5:114. doi:10.1186/gm51924380442
  • Savarimuthu FrancisSM, DavidsonMR, TanME, et al. MicroRNA-34c is associated with emphysema severity and modulates SERPINE1 expression. BMC Genomics. 2014;15(1):88. doi:10.1186/1471-2164-15-8824479666
  • EsquinasC, JanciauskieneS, GonzaloR, et al. Gene and miRNA expression profiles in PBMCs from patients with severe and mild emphysema and PiZZ alpha1-antitrypsin deficiency. Int J Chron Obstruct Pulmon Dis. 2017;12:3381–3390. doi:10.2147/COPD.S14544529238183
  • DvingeH, GitA, GräfS, et al. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature. 2013;497(7449):378–382. doi:10.1038/nature1210823644459
  • MoshiriF, SalviA, GramantieriL, et al. Circulating miR-106b-3p, miR-101-3p and miR-1246 as diagnostic biomarkers of hepatocellular carcinoma. Oncotarget. 2018;9(20):15350–15364. doi:10.18632/oncotarget.2460129632649
  • XuY-F, HannafonBN, ZhaoYD, et al. Plasma exosome miR-196a and miR-1246 are potential indicators of localized pancreatic cancer. Oncotarget. 2017;8(44):77028–77040. doi:10.18632/oncotarget.2033229100367
  • ZhangWC, ChinTM, YangH, et al. Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression. Nat Commun. 2016;7(1):11702. doi:10.1038/ncomms1170227325363
  • KimG, AnH-J, LeeM-J, et al. Hsa-miR-1246 and hsa-miR-1290 are associated with stemness and invasiveness of non-small cell lung cancer. Lung Cancer. 2016;91:15–22. doi:10.1016/j.lungcan.2015.11.01326711929
  • YuanD, XuJ, WangJ, et al. Extracellular miR-1246 promotes lung cancer cell proliferation and enhances radioresistance by directly targeting DR5. Oncotarget. 2016;7(22):32707–32722. doi:10.18632/oncotarget.901727129166
  • BottA, ErdemN, LerrerS, et al. miRNA-1246 induces pro-inflammatory responses in mesenchymal stem/stromal cells by regulating PKA and PP2A. Oncotarget. 2017;8(27):43897–43914. doi:10.18632/oncotarget.1491528159925
  • TranD, BergholzJ, ZhangH, et al. Insulin-like growth factor-1 regulates the SIRT 1-p53 pathway in cellular senescence. Aging Cell. 2014;13(4):669–678. doi:10.1111/acel.1221925070626
  • HenrotP, PrevelR, BergerP, et al. Chemokines in COPD: from implication to therapeutic use. Int J Mol Sci. 2019;20(11):2785. doi:10.3390/ijms20112785
  • BarwinskaD, OueiniH, PoirierC, et al. AMD3100 ameliorates cigarette smoke-induced emphysema-like manifestations in mice. Am J Physiol Lung Cell Mol Physiol. 2018;315(3):L382–L386. doi:10.1152/ajplung.00185.201829745251
  • Skronska-WasekW, GosensR, KonigshoffM, et al. WNT receptor signalling in lung physiology and pathology. Pharmacol Ther. 2018;187:150–166. doi:10.1016/j.pharmthera.2018.02.00929458107
  • YangF, XiongH, DuanL, et al. MiR-1246 promotes metastasis and invasion of A549 cells by targeting GSK-3β‒mediated Wnt/β-catenin pathway. Cancer Res Treat. 2019;51(4):1420–1429. doi:10.4143/crt.2018.63830913872
  • PassigliaF, BronteG, CastigliaM, et al. Prognostic and predictive biomarkers for targeted therapy in NSCLC: for whom the bell tolls? Expert Opin Biol Ther. 2015;15(11):1553–1566. doi:10.1517/14712598.2015.107134826360115