109
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Relationship Between Proteinase with a Disintegrin and a Metalloproteinase Domain-9 (ADAM9), Inflammation, Airway Remodeling, and Emphysema in COPD Patients

ORCID Icon, , , , , ORCID Icon, ORCID Icon & show all
Pages 3335-3346 | Published online: 14 Dec 2020

References

  • WangC, XuJ, YangL, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (The China pulmonary health [CPH] study): A national cross-sectional study. Lancet. 2018;391(10131):1706–1717. doi:10.1016/S0140-6736(18)30841-929650248
  • Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for prevention, diagnosis and management of chronic obstructive pulmonary disease (version 2020). Available from: https://goldcopd.org/gold-reports/.
  • ThoNV, RyujinY, OgawaE, et al. Relative contributions of emphysema and airway remodeling to airflow limitation in COPD: consistent results from two cohorts. Respirology. 2015;20(4):594–601. doi:10.1111/resp.1250525788016
  • HighamA, QuinnAM, CançadoJED, et al. The pathology of small airways disease in COPD: historical aspects and future directions. Respir Res. 2019;20(1):49.30832670
  • McDonoughJE, YuanR, SuzukiM, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365(17):1567–1575. doi:10.1056/NEJMoa110695522029978
  • DiazAA, ValimC, YamashiroT, et al. Airway count and emphysema assessed by chest CT imaging predicts clinical outcome in smokers. Chest. 2010;138(4):880–887. doi:10.1378/chest.10-054220558554
  • ChurgA, ZhouS, WrightJL. Series “matrix metalloproteinases in lung health and disease”: matrix metalloproteinases in COPD. Eur Respir J. 2012;39(1):197–209. doi:10.1183/09031936.0012161121920892
  • GharibSA, ManiconeAM, ParksWC. Matrix metalloproteinases in emphysema. Matrix Biol. 2018;73:34–51. doi:10.1016/j.matbio.2018.01.01829406250
  • PaulissenG, RocksN, GuedersMM, et al. Role of ADAM and ADAMTS metalloproteinases in airway diseases. Respir Res. 2009;10(1):127. doi:10.1186/1465-9921-10-12720034386
  • WangXY, LiW, HuangK, et al. Genetic variants in ADAM33 are associated with airway inflammation and lung function in COPD. BMC Pulm Med. 2014;4:173.
  • SadeghnejadA, OharJA, ZhengSL, et al. Adam33 polymorphisms are associated with COPD and lung function in long-term tobacco smokers. Respir Res. 2009;10(1):21. doi:10.1186/1465-9921-10-2119284602
  • StolarczykM, AmatngalimGD, YuX, et al. ADAM17 and EGFR regulate IL-6 receptor and amphiregulin mRNA expression and release in cigarette smoke-exposed primary bronchial epithelial cells from patients with chronic obstructive pulmonary disease (COPD). Physiol Rep. 2016;4(16):e12878. doi:10.14814/phy2.1287827561911
  • PolverinoF, Rojas-QuinteroJ, WangX, et al. A disintegrin and metalloproteinase domain-8: a novel protective proteinase in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2018;198(10):1254–1267. doi:10.1164/rccm.201707-1331OC29750543
  • DijkstraA, PostmaDS, NoordhoekJA, et al. Expression of ADAMs (“a disintegrin and metalloprotease”) in the human lung. Virchows Arch. 2009;454(4):441–449. doi:10.1007/s00428-009-0748-419255780
  • KirbyM, TanabeN, TanWC, et al. Total airway count on computed tomography and the risk of chronic obstructive pulmonary disease progression. findings from a population-based study. Am J Respir Crit Care Med. 2018;197(1):56–65. doi:10.1164/rccm.201704-0692OC28886252
  • BodduluriS, BhattSP, HoffmanEA, et al. Biomechanical CT metrics are associated with patient outcomes in COPD. Thorax. 2017;72:409–414. doi:10.1136/thoraxjnl-2016-20954428044005
  • OelsnerEC, SmithBM, HoffmanEA, et al. Prognostic significance of large airway dimensions on computed tomography in the general population. The multi-ethnic study of atherosclerosis (MESA) lung study. Ann Am Thorac Soc. 2018;15:718–727. doi:10.1513/AnnalsATS.201710-820OC29529382
  • WeibelER, GomezDM. Architecture of the human lung. use of quantitative methods establishes fundamental relations between size and number of lung structures. Science. 1962;137(3530):577–585. doi:10.1126/science.137.3530.57714005590
  • GuiotJ, DemarcheS, HenketM, et al. Methodology for sputum induction and laboratory processing. J Vis Exp. 2017;130:56612.
  • OstridgeK, WilliamsN, KimV, et al. Relationship between pulmonary matrix metalloproteinases and quantitative CT markers of small airways disease and emphysema in COPD. Thorax. 2016;71(2):126–132. doi:10.1136/thoraxjnl-2015-20742826645414
  • EurlingsIM, DentenerMA, CleutjensJP, et al. Similar matrix alterations in alveolar and small airway walls of COPD patients. BMC Pulm Med. 2014;26(14):90. doi:10.1186/1471-2466-14-90
  • ZhangP, ShenM, Fernandez-PatronC, et al. ADAMs family and relatives in cardiovascular physiology and pathology. J Mol Cell Cardiol. 2016;93:186–199. doi:10.1016/j.yjmcc.2015.10.03126522853
  • EdwardsDR, HandsleyMM, PenningtonCJ. The ADAM metalloproteinases. Mol Aspects Med. 2008;29(5):258–289. doi:10.1016/j.mam.2008.08.00118762209
  • OriaVO, LopattaP, SchillingO. The pleiotropic roles of ADAM9 in the biology of solid tumors. Cell Mol Life Sci. 2018;75(13):2291–2301. doi:10.1007/s00018-018-2796-x29550974
  • DreymuellerD, UhligS, LudwigA. ADAM-family metalloproteinases in lung inflammation: potential therapeutic targets. Am J Physiol Lung Cell Mol Physiol. 2015;308(4):325–343. doi:10.1152/ajplung.00294.2014
  • StolarczykM, ScholteBJ. The EGFR-ADAM17 axis in chronic obstructive pulmonary disease and cystic fibrosis lung pathology. Mediators Inflamm. 2018;2018:1067134. doi:10.1155/2018/106713429540993
  • RussellDW, GaggarA. ADAM9: A damaging player in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2018;198(12):1465–1466. doi:10.1164/rccm.201805-1012ED29986153
  • RoychaudhuriR, HergrueterAH, PolverinoF, et al. ADAM9 is a novel product of polymorphonuclear neutrophils: regulation of expression and contributions to extracellular matrix protein degradation during acute lung injury. J Immunol. 2014;193(5):2469–2482. doi:10.4049/jimmunol.130337025063875
  • FryJL, TokerA. Secreted and membrane-bound isoforms of protease ADAM9 have opposing effects on breast cancer cell migration. Cancer Res. 2010;70(20):8187–8198. doi:10.1158/0008-5472.CAN-09-423120736367
  • HaH, DebnathB, NeamatiN. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics. 2017;7(6):1543–1588. doi:10.7150/thno.1562528529637
  • ThatcherTH, McHughNA, EganRW, et al. Role of CXCR2 in cigarette smoke-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol. 2005;289:322–328. doi:10.1152/ajplung.00039.2005
  • GosselinkJV, HayashiS, ElliottWM, et al. Differential expression of tissue repair genes in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;181(12):1329–1335. doi:10.1164/rccm.200812-1902OC20075389
  • ShaykhievR, CrystalRG. Early events in the pathogenesis of chronic obstructive pulmonary disease. smoking-induced reprogramming of airway epithelial basal progenitor cells. Ann Am Thorac Soc. 2014;11 Suppl 5(Suppl5):S252–8. doi:10.1513/AnnalsATS.201402-049AW25525728
  • CrystalRG. Airway basal cells. The “smoking gun” of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;190(12):1355–1362. doi:10.1164/rccm.201408-1492PP25354273