103
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Osteoporosis in a Rat Model Co-Exposed to Cigarette Smoke and Intermittent Hypoxia

, , &
Pages 2817-2825 | Published online: 05 Nov 2020

References

  • Md ShawonSR, PerretJL, SenaratnaCV, LodgeC, HamiltonGS, DharmageSC. Current evidence on prevalence and clinical outcomes of co-morbid obstructive sleep apnea and chronic obstructive pulmonary disease: a systematic review. Sleep Med Rev. 2017;32:58–68.28169105
  • SandersMH, NewmanAB, HaggertyCL, et al. Sleep Heart Health Study. Sleep and sleep-disordered breathing in adults with predominantly mild obstructive airway disease. Am J Respir Crit Care Med. 2003;167(1):7–14. doi:10.1164/rccm.220304612502472
  • MarinJM, SorianoJB, CarrizoSJ, BoldovaA, CelliBR. Outcomes in patients with chronic obstructive pulmonary disease and obstructive sleep apnea: the overlap syndrome. Am J Respir Crit Care Med. 2010;182(3):325–331.20378728
  • McNicholasWT. COPD-OSA Overlap Syndrome: evolving evidence regarding epidemiology, clinical consequences, and management. Chest. 2017;152(6):1318–1326. doi:10.1016/j.chest.2017.04.16028442310
  • OwensRL, MalhotraA. Sleep-disordered breathing and COPD: the overlap syndrome. Respir Care. 2010;55(10):1333–1346.20875160
  • McNicholasWT. Chronic obstructive pulmonary disease and obstructive sleep apnea: overlaps in pathophysiology, systemic inflammation, and cardiovascular disease. Am J Respir Crit Care Med. 2009;180(8):692–700. doi:10.1164/rccm.200903-0347PP19628778
  • AgustíAGN, NogueraA, SauledaJ, SalaE, PonsJ, BusquetsX. Systemic effects of chronic obstructive pulmonary disease. Eur Respir J. 2003;21(2):347–360. doi:10.1183/09031936.03.0040570312608452
  • MacNeeW. Oxidants/antioxidants and COPD. Chest. 2000;117(5Suppl 1):303S–317S. doi:10.1378/chest.117.5_suppl_1.303S-a
  • RyanS, TaylorCT, McNicholasWT. Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation. 2005;112(17):2660–2667. doi:10.1161/CIRCULATIONAHA.105.55674616246965
  • Prevention and Management of Osteoporosis: report of a WHO scientific group. Available from: https://apps.who.int/iris/handle/10665/42841. Accessed 2003.
  • Graat-VerboomL, WoutersEFM, SmeenkFWJM, van den BorneBEEM, LundeR, SpruitMA. Current status of research on osteoporosis in COPD: a systematic review. Eur Respir J. 2009;34(1):209–218. doi:10.1183/09031936.5013040819567604
  • ChenY-L, WengS-F, ShenY-C, et al. Obstructive sleep apnea and risk of osteoporosis: a population-based cohort study in Taiwan. J Clin Endocrinol Metab. 2014;99(7):2441–2447. doi:10.1210/jc.2014-171824735427
  • WangT-Y, Yu-LunL, ChouP-C, et al. Associated bone mineral density and obstructive sleep apnea in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis. 2015;10:231–237. doi:10.2147/COPD.S7209925673983
  • FengJ, ChiangAA-P, WuQet al. Sleep-related hypoxemia aggravates systematic inflammation in emphysematous rats. Chin Med J (Engl). 2010;123(17):2392–2399.21034555
  • SaettaM, ShinerRJ, AngusGE, et al. Destructive index: a measurement of lung parenchymal destruction in smokers. Am Rev Respir Dis. 1985;131(5):764–769.4003921
  • ThurlbeckWM. Measurement of pulmonary emphysema. Am Rev Respir Dis. 1967;95(5):752–764.5337140
  • SabitR, BoltonCE, EdwardsPH, et al. Arterial stiffness and osteoporosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175(12):1259–1265. doi:10.1164/rccm.200701-067OC17363772
  • BoltonCE, IonescuAA, ShielsKM, et al. Associated loss of fat-free mass and bone mineral density in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170(12):1286–1293. doi:10.1164/rccm.200406-754OC15374843
  • Global strategy for the diagnosis, management, and prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD); 2020 Available from: http://www.goldcopd.org. Accessed 115, 2019.
  • SasakiM, ChubachiS, KameyamaN, et al. Effects of long-term cigarette smoke exposure on bone metabolism, structure, and quality in a mouse model of emphysema. PLoS One. 2018;13(1):e191611. doi:10.1371/journal.pone.0191611
  • KoCH, ChanRLY, SiuWS, et al. Deteriorating effect on bone metabolism and microstructure by passive cigarette smoking through dual actions on osteoblast and osteoclast. Calcif Tissue Int. 2015;96(5):389–400. doi:10.1007/s00223-015-9966-825694359
  • XiongJ, TianJ, Lu Zhou, Yanqing Le, Yongchang Sun. Interleukin-17A deficiency attenuated emphysema and bone loss in mice exposed to cigarette smoke. Int J Chron Obstruct Pulmon Dis. 2020;15:301–310. doi:10.2147/COPD.S23538432103929
  • UpalaS, SanguankeoA, CongreteS. Association between obstructive sleep apnea and osteoporosis: a systematic review and meta-analysis. Int J Endocrinol Metab. 2016;14(3):e36317. doi:10.5812/ijem.3631727942262
  • TomiyamaH, OkazakiR, InoueD, et al. Link between obstructive sleep apnea and increased bone resorption in men. Osteoporos Int. 2008;19(8):1185–1192. doi:10.1007/s00198-007-0556-018224268
  • UzkeserH, YildirimK, AktanB, et al. Bone mineral density in patients with obstructive sleep apnea syndrome. Sleep Breath. 2013;17(1):339–342. doi:10.1007/s11325-012-0698-y22467193
  • HamadaS, IkezoeK, HiraiT, et al. Evaluation of bone mineral density by computed tomography in patients with obstructive sleep apnea. J Clin Sleep Med. 2016;12(1):25–34. doi:10.5664/jcsm.538626235157
  • SforzaE, ThomasT, BarthélémyJ-C, ColletP, RocheF. Obstructive sleep apnea is associated with preserved bone mineral density in healthy elderly subjects. Sleep. 2013;36(10):1509–1515. doi:10.5665/sleep.304624082310
  • TorresM, MontserratJM, PavíaJ, et al. Chronic intermittent hypoxia preserves bone density in a mouse model of sleep apnea. Respir Physiol Neurobiol. 2013;189(3):646–648. doi:10.1016/j.resp.2013.08.01623994179
  • UttingJC, RobinsSP, Brandao-BurchA, OrrissIR, BeharJ, ArnettTR. Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp Cell Res. 2006;312(10):1693–1702. doi:10.1016/j.yexcr.2006.02.00716529738
  • IqbalJ, SunL, CaoJ, et al. Smoke carcinogens cause bone loss through the aryl hydrocarbon receptor and induction of Cyp1 enzymes. Proc Natl Acad Sci U S A. 2013;110(27):11115–11120. doi:10.1073/pnas.122091911023776235
  • StanojkovicI, Kotur-StevuljevicJ, SpasicS, et al. Relationship between bone resorption, oxidative stress and inflammation in severe COPD exacerbation. Clin Biochem. 2013;46(16–17):1678–1682. doi:10.1016/j.clinbiochem.2013.08.00323954853
  • RaiszLG. Local and systemic factors in the pathogenesis of osteoporosis. World Rev Nutr Diet. 1993;72:92–101.8506714
  • BertoliniDR, NedwinGE, BringmanTS, SmithDD, MundyGR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature. 1986;319(6053):516–518. doi:10.1038/319516a03511389
  • BoyleWJ, Scott SimonetW, LaceyDL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–342. doi:10.1038/nature0165812748652
  • ManolagasSC, JilkaRL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995;332(5):305–311. doi:10.1056/NEJM1995020233205067816067
  • De MartinisM, GinaldiL, SirufoMM, et al. Alarmins in osteoporosis, RAGE, IL-1, and IL-33 pathways: a literature review. Medicina (Kaunas). 2020;56(3):138. doi:10.3390/medicina56030138
  • GabryelskaA, KunaP, AntczakA, BiałasiewiczP, PanekM. IL-33 mediated inflammation in chronic respiratory diseases-understanding the role of the member of IL-1 superfamily. Front Immunol. 2019;10:692. doi:10.3389/fimmu.2019.0069231057533