115
Views
4
CrossRef citations to date
0
Altmetric
Original Research

MiR-218 Inhibits CSE-Induced Apoptosis and Inflammation in BEAS-2B by Targeting BRD4

, , , , &
Pages 3407-3416 | Published online: 31 Dec 2020

References

  • VogelmeierCF, CrinerGJ, MartinezFJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med. 2017;195(5):557–582. doi:10.1164/rccm.201701-0218PP28128970
  • TalayF, TosunM, YaşarZA, et al. Evaluation of pregnancy-associated plasma protein-A levels in patients with chronic obstructive pulmonary disease and associations with disease severity. Inflammation. 2016;39(3):1130–1133.27090654
  • CosioMG, SaettaM, AgustiA. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med. 2009;360(23):2445–2454.19494220
  • KimHJ, BaekS, KimHJ, et al. The impact of smoking on airflow limitation in subjects with history of asthma and inactive tuberculosis. PLoS One. 2015;10(4):e0125020.25915938
  • CrinerRN, HanMK. COPD care in the 21st century: a public health priority. Respir Care. 2018;63(5):591.29692353
  • FangX, WangX, BaiC. COPD in China: the burden and importance of proper management. Chest. 2011;139(4):920–929.21467059
  • BartelDP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233.19167326
  • SakaoS, TatsumiK. The importance of epigenetics in the development of chronic obstructive pulmonary disease. Respirology. 2011;16(7):1056–1063.21824218
  • OseiET, Florez-SampedroL, TimensW, PostmaDS, HeijinkIH, BrandsmaC-A. Unravelling the complexity of COPD by microRNAs: it’s a small world after all. Eur Respir J. 2015;46(3):807.26250493
  • OseiET, Florez-SampedroL, TasenaH, et al. miR-146a-5p plays an essential role in the aberrant epithelial–fibroblast cross-talk in COPD. Eur Respir J. 2017;49(5):1602538. doi:10.1183/13993003.02538-201628546273
  • ZhouH, LiJ, GaoP, WangQ, ZhangJ. miR-155: a novel target in allergic asthma. Int J Mol Sci. 2016;17(10):1773. doi:10.3390/ijms17101773
  • XuH, SunQ, LuL, et al. MicroRNA-218 acts by repressing TNFR1-mediated activation of NF-κB, which is involved in MUC5AC hyper-production and inflammation in smoking-induced bronchiolitis of COPD. Toxicol Lett. 2017;280:171–180. doi:10.1016/j.toxlet.2017.08.07928864214
  • DevaiahBN, SingerDS. Two faces of brd4: mitotic bookmark and transcriptional lynchpin. Transcription. 2013;4(1):13–17. doi:10.4161/trns.2254223131666
  • HajmirzaA, EmadaliA, GauthierA, CasasnovasO, GressinR, CallananBM. BET family protein BRD4: an emerging actor in NFκB signaling in inflammation and cancer. Biomedicines. 2018;6(1):16. doi:10.3390/biomedicines6010016
  • HuangB, YangX-D, Zhou-M-M, OzatoK, ChenL-F. Brd4 coactivates transcriptional activation of NF-κB via specific binding to acetylated RelA. Mol Cell Biol. 2009;29(5):1375. doi:10.1128/MCB.01365-0819103749
  • BrusselleGG, JoosGF, BrackeKR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 2011;378(9795):1015–1026. doi:10.1016/S0140-6736(11)60988-421907865
  • PouwelsSD, HesseL, FaizA, et al. Susceptibility for cigarette smoke-induced DAMP release and DAMP-induced inflammation in COPD. Am J Physiol Lung Cell Mol Physiol. 2016;311(5):L881–L92.27612964
  • JinY, WanY, ChenG, et al. Treg/IL-17 ratio and treg differentiation in patients with COPD. PLoS One. 2014;9(10):e111044. doi:10.1371/journal.pone.011104425329073
  • GaoW, LiL, WangY, et al. Bronchial epithelial cells: the key effector cells in the pathogenesis of chronic obstructive pulmonary disease? Respirology. 2015;20(5):722–729. doi:10.1111/resp.1254225868842
  • TafrihiM, HasheminasabE. MiRNAs: biology, biogenesis, their web-based tools, and databases. MicroRNA (Shariqah, United Arab Emirates). 2019;8(1):4–27.
  • Nana-SinkamSP, KarsiesT, RisciliB, EzzieM, PiperM. Lung microRNA: from development to disease. Expert Rev Respir Med. 2009;3(4):373–385. doi:10.1586/ers.09.3020477329
  • SchembriF, SridharS, PerdomoC, et al. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc Natl Acad Sci. 2009;106(7):2319. doi:10.1073/pnas.080638310619168627
  • WangG, WangR, Strulovici-BarelY, et al. Persistence of smoking-induced dysregulation of MiRNA expression in the small airway epithelium despite smoking cessation. PLoS One. 2015;10(4):e0120824. doi:10.1371/journal.pone.012082425886353
  • DavidsonMR, LarsenJE, YangIA, et al. MicroRNA-218 is deleted and downregulated in lung squamous cell carcinoma. PLoS One. 2010;5(9):e12560.20838434
  • WangJ, LiZ, GeQ, et al. Characterization of microRNA transcriptome in tumor, adjacent, and normal tissues of lung squamous cell carcinoma. J Thorac Cardiovasc Surg. 2015;149(5):1404–14.e4.25813410
  • TianB, YangJ, ZhaoY, et al. BRD4 couples NF-κB/RelA with airway inflammation and the IRF-RIG-I amplification loop in respiratory syncytial virus infection. J Virol. 2017;91(6).
  • NicodemeE, JeffreyKL, SchaeferU, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468(7327):1119–1123.21068722
  • SongJ, WangQ, ZongL. LncRNA MIR155HG contributes to smoke-related chronic obstructive pulmonary disease by targeting miR-128-5p/BRD4 axis. Biosci Rep. 2020;40(3).
  • TangK, ZhaoJ, XieJ, WangJ. Decreased miR-29b expression is associated with airway inflammation in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2019;316(4):L621–l9.30652495