664
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Prediction of Obstructive Lung Disease from Chest Radiographs via Deep Learning Trained on Pulmonary Function Data

ORCID Icon, ORCID Icon, , , ORCID Icon, , & ORCID Icon show all
Pages 3455-3466 | Published online: 05 Jan 2021

References

  • LitjensG, KooiT, BejnordiBE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88. doi:10.1016/j.media.2017.07.00528778026
  • HavaeiM, DavyA, Warde-FarleyD, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31. doi:10.1016/j.media.2016.05.00427310171
  • NgoTA, LuZ, CarneiroG. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med Image Anal. 2017;35:159–171. doi:10.1016/j.media.2016.05.00927423113
  • RajpurkarP, IrvinJ, ZhuK, et al. Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning. CoRR. 2017.
  • LakhaniP, SundaramB. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574–582. doi:10.1148/radiol.201716232628436741
  • WangX, PengY, LuL, LuZ, BagheriM, SummersRM. ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI; 2017.
  • YaoL, PoblenzE, DaguntsD, et al. Learning to diagnose from scratch by exploiting dependencies among labels. CoRR. 2017.
  • LiZ, WangC, HanM, et al.. Thoracic disease identification and localization with limited supervision. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT; 2018.
  • SeahJCY, TangJSN, KitchenA, et al. Chest radiographs in congestive heart failure: visualizing neural network learning. Radiology. 2019;290(2):514–522. doi:10.1148/radiol.201818088730398431
  • MartinezCH, ManninoDM, JaimesFA, et al. Undiagnosed obstructive lung disease in the United States. AnnalsATS. 2015;12(12):1788–1795. doi:10.1513/AnnalsATS.201506-388OC26524488
  • MartinezFJ, O’ConnorGT. Screening, case-finding, and outcomes for adults with unrecognized COPD. JAMA. 2016;315(13):1333–1334. doi:10.1001/jama.2016.327426940511
  • QuaderiSA, HurstJR. The unmet global burden of COPD. Glob Health Epidemiol Genom. 2018;3(ed4). doi:10.1017/gheg.2018.1
  • ChatilaWM, ThomashowBM, MinaiOA, et al. Comorbidities in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2008;5(4):549–555. doi:10.1513/pats.200709-148ET18453370
  • GonzalezJ, MarinM, Sanchez-SalcedoP, ZuluetaJJ. Lung cancer screening in patients with chronic obstructive pulmonary disease. Ann Transl Med. 2016;4(8):160. doi:10.21037/atm.2016.03.5727195278
  • SiegelRL, MillerKD, JemalA. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. doi:10.3322/caac.2144229313949
  • The National Lung Cancer Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409. doi:10.1056/NEJMoa110287321714641
  • MoyerVA, LeFevre ML, Siu AL, et al. Screening for lung cancer: U.S. preventative services task force recommendation statement. Ann Intern Med. 2014;160(5):330–338. doi:10.7326/M13-277124378917
  • JemalA, FedewaSA. Lung cancer screening with low-dose computed tomography in the United States—2010 to 2015. JAMA Oncol. 2017;3(9):1278–1281. doi:10.1001/jamaoncol.2016.641628152136
  • PhamD, BhandariS, OechsliM, et al. Lung cancer screening rates: data from the lung cancer screening registry. J Clin Oncol. 2018;36(15_suppl):6504. doi:10.1200/JCO.2018.36.15_suppl.6504
  • HochreiterS, SchmidhuberJ. Long short-term memory. Neural Comput. 1997;9(8):1735–1780. doi:10.1162/neco.1997.9.8.17359377276
  • SchusterM, PaliwalKK. Bidirectional recurrent neural networks. IEEE Trans Signal Process. 1997;45(11):2673–2681. doi:10.1109/78.650093
  • LiuY, OttM, GoyalN, et al. RoBERTa: a Robustly Optimized BERT Pretraining Approach. arXiv. 2019.
  • ReganEA, HokansonJE, MurphyJR, et al. Genetic epidemiology of COPD (COPDGene) study design. COPD. 2011;7(1):32–43. doi:10.3109/15412550903499522
  • TsengH, HenryTS, VeeraraghavanS, et al. Pulmonary function tests for the radiologist. RadioGraphics. 2017;37(4):1037–1058. doi:10.1148/rg.201716017428598732
  • TashkinDP, WangH, HalpinD, et al. Comparison of the variability of the annual rates of change in FEV1 determined from serial measurements of the pre- versus post-bronchodilator FEV1 over 5 years in mild to moderate COPD: results of the lung health study. Respir Res. 2012;13(1):70. doi:10.1186/1465-9921-13-7022894725
  • ManninoDM, Diaz-GuzmanE, BuistS. Pre- and post-bronchodilator lung function as predictors of mortality in the lung health study. Respir Res. 2011;12(1):136. doi:10.1186/1465-9921-12-13621991942
  • RabeKF, HurdS, AnzuetoA, et al. Global initiative for chronic obstructive lung disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Resp Crit Care Med. 2007;176(6):532–555. doi:10.1164/rccm.200703-456SO17507545
  • RussakovskyO, DengJ, SuH, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211–252. doi:10.1007/s11263-015-0816-y
  • HeK, ZhangX, RenS, SunJ. Deep residual learning for image recognition. In: IEEE CVPR, Las Vegas, NV; 2016: 770–778.
  • HintonGE, SrivastavaN, KrizhevskyA, SutskeverI, SalakhutdinovRR. Improving neural networks by preventing co-adaptation of feature detectors. arXiv. 2012.
  • KingmaDP, BaJ. Adam: a method for stochastic optimization. Arxiv:1412.6980. 3rd International Conference for Learning Representations, San Diego, CA; 2015.
  • PenningtonJ, SocherR, ManningC. Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), Dohar, Qatar; 2014: 1532–1543).
  • SrivastavaRK, GreffK, SchmidhuberJ. Highway networks. arXiv. 2015.
  • GlorotX, BengioY. Understanding the difficulty of training deep feedforward neural networks. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Sardinia, Italy; 9:249–256, 2010.
  • SrivastavaN, HintonG, KrizhevshkA, et al. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–1958.
  • KingmaDP, BaJL. Adam: a method for stochastic optimization. International Conference on Learning Representations (ICLR) 2015. arXiv. 2017.
  • LoshchilovI, HutterF. Decoupled weight decay regularization. International Conference on Learning Representations (ICLR) 2019. arXiv. 2019.