161
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Ninjin’yoeito Ameliorates Skeletal Muscle Complications in COPD Model Mice by Upregulating Peroxisome Proliferator-Activated Receptor γ Coactivator-1α Expression

ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon, , , & show all
Pages 3063-3077 | Published online: 27 Nov 2020

References

  • EisnerMD, AnthonisenN, CoultasD, et al. An official American Thoracic Society public policy statement: novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(5):693–718. doi:10.1164/rccm.200811-1757ST20802169
  • HoggJC, TimensW. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol. 2009;4:435–459. doi:10.1146/annurev.pathol.4.110807.09214518954287
  • BarnesPJ, CelliBR. Systemic manifestations and comorbidities of COPD. Eur Respir J. 2009;33(5):1165–1185. doi:10.1183/09031936.0012800819407051
  • MillerJ, EdwardsLD, AgustíA, et al. Comorbidity, systemic inflammation and outcomes in the ECLIPSE cohort. Respir Med. 2013;107(9):1376–1384. doi:10.1016/j.rmed.2013.05.00123791463
  • JonesSE, MaddocksM, KonSS, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015;70(3):213–218. doi:10.1136/thoraxjnl-2014-20644025561517
  • Montes de OcaM, TorresSH, De SanctisJ, MataA, HernándezN, TálamoC. Skeletal muscle inflammation and nitric oxide in patients with COPD. Eur Respir J. 2005;26(3):390–397. doi:10.1183/09031936.05.0010740416135718
  • BarreiroE, GeaJ, CorominasJM, HussainSN. Nitric oxide synthases and protein oxidation in the quadriceps femoris of patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2003;29(6):771–778. doi:10.1165/rcmb.2003-0138OC12816735
  • de TheijeC, CostesF, LangenRC, PisonC, GoskerHR. Hypoxia and muscle maintenance regulation: implications for chronic respiratory disease. Curr Opin Clin Nutr Metab Care. 2011;14(6):548–553. doi:10.1097/MCO.0b013e32834b6e7921934612
  • O’DonnellDE, JamesMD, MilneKM, NederJA. The pathophysiology of dyspnea and exercise intolerance in Chronic Obstructive Pulmonary Disease. Clin Chest Med. 2019;40(2):343–366. doi:10.1016/j.ccm.2019.02.00731078214
  • BossenbroekL, de GreefMHG, WempeJB, KrijnenWP, Ten HackenNHT. Daily physical activity in patients with chronic obstructive pulmonary disease: a systematic review. COPD. 2011;8(4):306–319. doi:10.3109/15412555.2011.57860121728804
  • MostertR, GorisA, Weling-ScheepersC, WoutersEF, ScholsAM. Tissue depletion and health related quality of life in patients with chronic obstructive pulmonary disease. Respir Med. 2000;94(9):859–867. doi:10.1053/rmed.2000.082911001077
  • Gimeno-SantosE, FreiA, Steurer-SteyC, et al. Determinants and outcomes of physical activity in patients with COPD: a systematic review. Thorax. 2014;69(8):731–739. doi:10.1136/thoraxjnl-2013-20476324558112
  • WaschkiB, KirstenA, HolzO, et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. Chest. 2011;140(2):331–342. doi:10.1378/chest.10-252121273294
  • JaitovichA, BarreiroE. Skeletal muscle dysfunction in Chronic Obstructive Pulmonary Disease. What we know and can do for our patients. Am J Respir Crit Care Med. 2018;198(2):175–186. doi:10.1164/rccm.201710-2140CI29554438
  • Puente-MaestuL, Pérez-ParraJ, GodoyR, et al. Abnormal mitochondrial function in locomotor and respiratory muscles of COPD patients. Eur Respir J. 2009;33(5):1045–1052. doi:10.1183/09031936.0011240819129279
  • JobinJ, MaltaisF, DoyonJF, et al. Chronic obstructive pulmonary disease: capillarity and fiber-type characteristics of skeletal muscle. J Cardiopulm Rehabil. 1998;18(6):432–437. doi:10.1097/00008483-199811000-000059857275
  • CouillardA, PrefautC. From muscle disuse to myopathy in COPD: potential contribution of oxidative stress. Eur Respir J. 2005;26(4):703–719.16204604
  • KovesTR, LiP, AnJ, et al. Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem. 2005;280(39):33588–33598. doi:10.1074/jbc.M50762120016079133
  • RemelsAH, SchrauwenP, BroekhuizenR, et al. Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD. Eur Respir J. 2007;30(2):245–252. doi:10.1183/09031936.0014410617459894
  • MahgoubMO, D’SouzaC, Al DarmakiR, BaniyasM, AdeghateE. An update on the role of irisin in the regulation of endocrine and metabolic functions. Peptides. 2018;104:15–23. doi:10.1016/j.peptides.2018.03.01829608940
  • IjiriN, KanazawaH, AsaiK, WatanabeT, HirataK. Irisin, a newly discovered myokine, is a novel biomarker associated with physical activity in patients with chronic obstructive pulmonary disease. Respirology. 2015;20(4):612–617. doi:10.1111/resp.1251325800067
  • SugiyamaY, AsaiK, YamadaK, et al. Decreased levels of irisin, a skeletal muscle cell-derived myokine, are related to emphysema associated with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;12:765–772. doi:10.2147/COPD.S12623328424548
  • KuboH, AsaiK, KojimaK, et al. Exercise ameliorates emphysema of cigarette smoke-induced COPD in mice through the exercise-Irisin-Nrf2 axis. Int J Chron Obstruct Pulmon Dis. 2019;14:2507–2516. doi:10.2147/COPD.S22662331814716
  • UtoNS, AmitaniH, AtobeY, et al. Herbal medicine Ninjin’yoeito in the treatment of sarcopenia and frailty. Front Nutr. 2018;5:126. doi:10.3389/fnut.2018.0012630619872
  • OhsawaM, MaruokaJ, InamiC, IwakiA, MurakamiT, IshikuraKI. Effect of Ninjin’yoeito on the loss of skeletal muscle function in cancer-bearing mice. Front Pharmacol. 2018;9:1400. doi:10.3389/fphar.2018.0140030555329
  • TakahashiR, ChibaS, TakemotoR, MichiharaS, HanLK, HujitaH. Ninjin’yoeito improves survival and aging phenotype on accelerated aging model (in Japanese). Jpn J Psychosom Int Med. 2018;22(1):16–19.
  • KimYJ, YooSR, ChaeCK, JungUJ, ChoiMS. Omija fruit extract improves endurance and energy metabolism by upregulating PGC-1α expression in the skeletal muscle of exercised rats. J Med Food. 2014;17(1):28–35. doi:10.1089/jmf.2013.307124456352
  • ParkMW, HaJ, ChungSH. 20(S)-ginsenoside Rg3 enhances glucose-stimulated insulin secretion and activates AMPK. Biol Pharm Bull. 2008;31(4):748–751. doi:10.1248/bpb.31.74818379076
  • ThurlbeckWM. The internal surface area of nonemphysematous lungs. Am Rev Respir Dis. 1967;95(5):765–773.6023510
  • SaettaM, ShinerRJ, AngusGE, et al. Destructive index: a measurement of lung parenchymal destruction in smokers. Am Rev Respir Dis. 1985;131(5):764–769.4003921
  • Cruz-JentoftAJ, BahatG, BauerJ, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31.30312372
  • KimKM, JangHC, LimS. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J Intern Med. 2016;31(4):643–650. doi:10.3904/kjim.2016.01527334763
  • KojimaK, AsaiK, KuboH, et al. Isoflavone aglycones attenuate cigarette smoke-induced emphysema via suppression of neutrophilic inflammation in a COPD murine model. Nutrients. 2019;11(9):2023. doi:10.3390/nu11092023
  • KuboH, AsaiK, KojimaK, et al. Astaxanthin suppresses cigarette smoke-induced emphysema through Nrf2 activation in mice. Mar Drugs. 2019;17(12):673. doi:10.3390/md17120673
  • EidelmanDH, GhezzoH, KimWD, CosioMG. The destructive index and early lung destruction in smokers. Am Rev Respir Dis. 1991;144(1):156–159. doi:10.1164/ajrccm/144.1.1562064122
  • GreavesIA, ColebatchHJ. Elastic behavior and structure of normal and emphysematous lungs post mortem. Am Rev Respir Dis. 1980;121(1):127–136.7352696
  • VerbekenEK, CauberghsM, MertensI, ClementJ, LauwerynsJM, Van de WoestijneKP. The senile lung. Comparison with normal and emphysematous lungs. 2. Functional aspects. Chest. 1992;101(3):800–809. doi:10.1378/chest.101.3.8001541149
  • MaltaisF, DecramerM, CasaburiR, et al. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189(9):e15–62. doi:10.1164/rccm.201402-0373ST24787074
  • BenzE, TrajanoskaK, LahousseL, et al. Sarcopenia in COPD: a systematic review and meta-analysis. Eur Respir Rev. 2019;28(154):13.
  • LarssonL. Histochemical characteristics of human skeletal muscle during aging. Acta Physiol Scand. 1983;117(3):469–471. doi:10.1111/j.1748-1716.1983.tb00024.x6880808
  • van de BoolC, GoskerHR, van den BorstB, Op den KampCM, SlotIGM, ScholsAMWJ. Muscle quality is more impaired in sarcopenic patients with Chronic Obstructive Pulmonary Disease. J Am Med Dir Assoc. 2016;17(5):415–420. doi:10.1016/j.jamda.2015.12.09426848065
  • ChanSMH, CerniC, PasseyS, et al. Cigarette smoking exacerbates skeletal muscle injury without compromising its regenerative capacity. Am J Respir Cell Mol Biol. 2020;62(2):217–230. doi:10.1165/rcmb.2019-0106OC31461300
  • SuJ, LiJ, LuY, et al. The rat model of COPD skeletal muscle dysfunction induced by progressive cigarette smoke exposure: a pilot study. BMC Pulm Med. 2020;20(1):74.32293377
  • TaivassaloT, HussainSNA. Contribution of the mitochondria to locomotor muscle dysfunction in patients with COPD. Chest. 2016;149(5):1302–1312. doi:10.1016/j.chest.2015.11.02126836890
  • Puente-MaestuL, LázaroA, HumanesB. Metabolic derangements in COPD muscle dysfunction. J Appl Physiol (1985). 2013;114(9):1282–1290.23288549
  • LinJ, WuH, TarrPT, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418(6899):797–801. doi:10.1038/nature0090412181572
  • SandriM, LinJ, HandschinC, et al. PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A. 2006;103(44):16260–16265. doi:10.1073/pnas.060779510317053067
  • CannavinoJ, BroccaL, SandriM, BottinelliR, PellegrinoMA. PGC1-α over-expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice. J Physiol. 2014;592(20):4575–4589. doi:10.1113/jphysiol.2014.27554525128574
  • MorinagaA, NakamuraH, HattanmaruK, RokotNT, KimuraY, ItoT. Good rehabilitation outcomes and improved nutritional status after treatment with the japanese herbal medicine Ninjin’yoeito in an elderly patient with hip fracture and sarcopenia: a case report. Front Nutr. 2020;7:85. doi:10.3389/fnut.2020.0008532714940
  • SuzukiS, AiharaF, ShibaharaM, SakaiK. Safety and effectiveness of Ninjin’yoeito: a utilization study in elderly patients. Front Nutr. 2019;6:14. doi:10.3389/fnut.2019.0001430873411
  • HiraiK, HommaT, MatsunagaT, et al. Usefulness of Ninjin’yoeito for Chronic Obstructive Pulmonary Disease patients with frailty. J Altern Complement Med. 2020;26(8):750–757. doi:10.1089/acm.2020.0083.32551796
  • The top 10 causes of death[homepage on the internet]. World Health Organization; 2018 Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 1020, 2020.
  • SwallowEB, ReyesD, HopkinsonNS, et al. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax. 2007;62(2):115–120. doi:10.1136/thx.2006.06202617090575
  • AttawayAH, WelchN, HatipoğluU, ZeinJG, DasarathyS. Muscle loss contributes to higher morbidity and mortality in COPD: an analysis of national trends. Respirology. 2020. doi:10.1111/resp.13877.
  • YoungA. Rehabilitation of patients with pulmonary disease. Ann Acad Med Singapore. 1983;12(3):410–416.6378052
  • GiffordJR, TrinityJD, KwonOS, et al. Altered skeletal muscle mitochondrial phenotype in COPD: disease vs. disuse. J Appl Physiol (1985). 2018;124(4):1045–1053. doi:10.1152/japplphysiol.00788.201729357496
  • Arbillaga-EtxarriA, Gimeno-SantosE, Barberan-GarciaA, et al. Long-term efficacy and effectiveness of a behavioural and community-based exercise intervention (Urban Training) to increase physical activity in patients with COPD: a randomised controlled trial. Eur Respir J. 2018;52(4):1800063. doi:10.1183/13993003.00063-201830166322
  • RobinsonH, WilliamsV, CurtisF, BridleC, JonesAW. Facilitators and barriers to physical activity following pulmonary rehabilitation in COPD: a systematic review of qualitative studies. NPJ Prim Care Respir Med. 2018;28(1):19. doi:10.1038/s41533-018-0085-729867117
  • SteinerMC, BartonRL, SinghSJ, MorganMD. Nutritional enhancement of exercise performance in chronic obstructive pulmonary disease: a randomised controlled trial. Thorax. 2003;58(9):745–751. doi:10.1136/thorax.58.9.74512947128
  • BurdetL, de MuraltB, SchutzY, PichardC, FittingJW. Administration of growth hormone to underweight patients with chronic obstructive pulmonary disease. A prospective, randomized, controlled study. Am J Respir Crit Care Med. 1997;156(6):1800–1806. doi:10.1164/ajrccm.156.6.97041429412558
  • FuldJP, KilduffLP, NederJA, et al. Creatine supplementation during pulmonary rehabilitation in chronic obstructive pulmonary disease. Thorax. 2005;60(7):531–537. doi:10.1136/thx.2004.03045215994258
  • FerreiraIM, BrooksD, WhiteJ, GoldsteinR. Nutritional supplementation for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2012;12:Cd000998.23235577
  • Toledo-ArrudaAC, VieiraRP, GuarnierFA, et al. Time-course effects of aerobic physical training in the prevention of cigarette smoke-induced COPD. J Appl Physiol (1985). 2017;123(3):674–683. doi:10.1152/japplphysiol.00819.201628729393
  • Rodrigues Brandao-RangelMA, BachiALL, Oliveira-JuniorMC, et al. Exercise inhibits the effects of smoke-induced COPD involving modulation of STAT3. Oxid Med Cell Longev. 2017;2017:1–13. doi:10.1155/2017/6572714.