129
Views
14
CrossRef citations to date
0
Altmetric
Original Research

miRNA-486-5p Promotes COPD Progression by Targeting HAT1 to Regulate the TLR4-Triggered Inflammatory Response of Alveolar Macrophages

, , , , , & show all
Pages 2991-3001 | Published online: 17 Nov 2020

References

  • López‐CamposJL, TanW, SorianoJB. Global burden of COPD. Respirology. 2016;21(1):14–23. doi:10.1111/resp.1266026494423
  • TanWC, BourbeauJ, AaronSD, et al. Global initiative for chronic obstructive lung disease 2017 classification and lung function decline in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2018;197(5):670–673. doi:10.1164/rccm.201706-1154LE28858570
  • JindalSK. Chronic obstructive pulmonary disease in non-smokers-is it a different phenotype? Indian J Med Res. 2018;147(4):337. doi:10.4103/ijmr.IJMR_10_1829998868
  • CaramoriG, CasolariP, BarczykA, DurhamAL, Di StefanoA, AdcockI. COPD immunopathology. Semin Immunopathol. 2016;38(4):497–515. doi:10.1007/s00281-016-0561-527178410
  • BarnesPJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16–27. doi:10.1016/j.jaci.2016.05.01127373322
  • KawaiT, AkiraS. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11(5):373.20404851
  • KumarH, KawaiT, AkiraS. Toll-like receptors and innate immunity. Biochem Biophys Res Commun. 2009;388(4):621–625. doi:10.1016/j.bbrc.2009.08.06219686699
  • DrexlerSK, FoxwellBM. The role of toll-like receptors in chronic inflammation. Int J Biochem Cell Biol. 2010;42(4):506–518. doi:10.1016/j.biocel.2009.10.00919837184
  • AchekA, YesudhasD, ChoiS. Toll-like receptors: promising therapeutic targets for inflammatory diseases. Arch Pharm Res. 2016;39(8):1032–1049. doi:10.1007/s12272-016-0806-927515048
  • PaceE, GiarratanoA, FerraroM, et al. TLR4 upregulation underpins airway neutrophilia in smokers with chronic obstructive pulmonary disease and acute respiratory failure. Hum Immunol. 2011;72(1):54–62. doi:10.1016/j.humimm.2010.09.00920888880
  • BudulacSE, BoezenHM, HiemstraPS, et al. Toll-like receptor (TLR2 and TLR4) polymorphisms and chronic obstructive pulmonary disease. PLoS One. 2012;7(8):e43124–e24. doi:10.1371/journal.pone.004312422952638
  • Di StefanoA, RicciardoloFL, CaramoriG, et al. Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression. Eur Respir J. 2017;49(5):1602006. doi:10.1183/13993003.02006-201628536249
  • SaulerM, NouwsJ, FengW, LeeP. MicroRNA regulation of cell fate in the pathogenesis of COPD In: C63. MECHANISTIC STUDIES in COPD. American Thoracic Society; 2019:A5375–A75.
  • TasenaH, FaizA, TimensW, et al. microRNA–mRNA regulatory networks underlying chronic mucus hypersecretion in COPD. Eur Respir J. 2018;52(3):1701556. doi:10.1183/13993003.01556-201730072506
  • WrenchC, BakerJ, FenwickP, DonnellyL, BarnesP. MicroRNA-34a drives small airway fibroblast cellular senescence in COPD. Eur Respir J. 2017;50(suppl61):OA289. doi:10.1183/1393003.congress-2017
  • HsuAC, DuaK, StarkeyMR, et al. MicroRNA-125a and-b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD. JCI Insight. 2017;2(7). doi:10.1172/jci.insight.90443.
  • HeW, RebelloO, SavinoR, et al. TLR4 triggered complex inflammation in human pancreatic islets. Biochim Biophys Acta. 2019;1865(1):86–97. doi:10.1016/j.bbadis.2018.09.030
  • LiuC, TangX, ZhangW, et al. 6-Bromoindirubin-3′-oxime suppresses LPS-induced inflammation via inhibition of the TLR4/NF-κB and TLR4/MAPK signaling pathways. Inflammation. 2019;42(6):2192–2204. doi:10.1007/s10753-019-01083-131599382
  • HoggJC, ParéPD, HackettT-L. The contribution of small airway obstruction to the pathogenesis of chronic obstructive pulmonary disease. Physiol Rev. 2017;97(2):529–552.28151425
  • TuderRM. Bringing light to chronic obstructive pulmonary disease pathogenesis and resilience. Ann Am Thorac Soc. 2018;15(Supplement 4):S227–S33. doi:10.1513/AnnalsATS.201808-583MG30759011
  • BoucheratO, MorissetteMC, ProvencherS, BonnetS, MaltaisF. Bridging lung development with chronic obstructive pulmonary disease. Relevance of developmental pathways in chronic obstructive pulmonary disease pathogenesis. Am J Respir Crit Care Med. 2016;193(4):362–375. doi:10.1164/rccm.201508-1518PP26681127
  • HuangX, ZhuZ, GuoX, KongX. The roles of microRNAs in the pathogenesis of chronic obstructive pulmonary disease. Int Immunopharmacol. 2019;67:335–347. doi:10.1016/j.intimp.2018.12.01330578969
  • ConickxG, MestdaghP, Avila CobosF, et al. MicroRNA profiling reveals a role for microRNA-218-5p in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2017;195(1):43–56. doi:10.1164/rccm.201506-1182OC27409149
  • PaschalakiKE, ZampetakiA, BakerJR, et al. Downregulation of microRNA-126 augments DNA damage response in cigarette smokers and patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2018;197(5):665–668. doi:10.1164/rccm.201706-1304LE28753388
  • OhHK, TanAL-K, DasK, et al. Genomic loss of miR-486 regulates tumor progression and the OLFM4 antiapoptotic factor in gastric cancer. Clin Cancer Res. 2011;17(9):2657–2667. doi:10.1158/1078-0432.CCR-10-315221415212
  • FuSJ, ChenJ, JiF, et al. MiR-486-5p negatively regulates oncogenic NEK2 in hepatocellular carcinoma. Oncotarget. 2017;8(32):52948–52959.28881785
  • ShiL, LiuS, ZhaoW, ShiJ. miR-483-5p and miR-486-5p are down-regulated in cumulus cells of metaphase II oocytes from women with polycystic ovary syndrome. Reprod Biomed Online. 2015;31(4):565–572. doi:10.1016/j.rbmo.2015.06.02326283014
  • ShaoY, ShenYQ, LiYL, LiangC, MaZ-L. Direct repression of the oncogene CDK4 by the tumor suppressor miR-486-5p in non-small cell lung cancer. Oncotarget. 2016;7(23):34011–34021. doi:10.18632/oncotarget.851427049724
  • GaoZJ, YuanW-D, YuanJ-Q, YuanK, WangY. miR-486-5p functions as an oncogene by targeting PTEN in non-small cell lung cancer. Pathol Res Pract. 2018;214(5):700–5.29567332
  • XingyuC. miR-486-5p inhibits inflammatory response, matrix degradation and apoptosis of nucleus pulposus cells through directly targeting FOXO1 in intervertebral disc degeneration. Cell Physiol Biochem. 2019;52:109–118.30790508
  • ShenW, LiuJ, ZhaoG, et al. Repression of toll-like receptor-4 by microRNA-149-3p is associated with smoking-related COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:705–715. doi:10.2147/COPD.S12803128260877
  • LaiL, SongY, LiuY, et al. MicroRNA-92a negatively regulates toll-like receptor (TLR)-triggered inflammatory response in macrophages by targeting MKK4 kinase. J Biol Chem. 2013;288(11):7956–7967. doi:10.1074/jbc.M112.44542923355465
  • LiuD, ZhangM, XieW, et al. MiR-486 regulates cholesterol efflux by targeting HAT1. Biochem Biophys Res Commun. 2016;472(3):418–424. doi:10.1016/j.bbrc.2015.11.12826654953
  • SchambergerAC, MiseN, MeinersS, EickelbergO. Epigenetic mechanisms in COPD: implications for pathogenesis and drug discovery. Expert Opin Drug Discov. 2014;9(6):609–628. doi:10.1517/17460441.2014.91302024850530
  • Wu-D-D, SongJ, BartelS, Krauss-EtschmannS, RotsMG, HylkemaMN. The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach. Pharmacol Ther. 2018;182:1–14. doi:10.1016/j.pharmthera.2017.08.00728830839
  • AdcockIM. Role of epigenetic modifications in pathology of COPD. Tanaffos. 2017;16(Suppl 1):S2.29158743
  • LawrenceM, DaujatS, SchneiderR. Lateral thinking: how histone modifications regulate gene expression. Trends Genet. 2016;32(1):42–56. doi:10.1016/j.tig.2015.10.00726704082
  • StillmanB. Histone modifications: insights into their influence on gene expression. Cell. 2018;175(1):6–9. doi:10.1016/j.cell.2018.08.03230217360
  • ParthunM. Hat1: the emerging cellular roles of a type B histone acetyltransferase. Oncogene. 2007;26(37):5319–5328.17694075
  • HanN, ShiL, GuoQ, et al. HAT1 induces lung cancer cell apoptosis via up regulating fas. Oncotarget. 2017;8(52):89970. doi:10.18632/oncotarget.2120529163803
  • ChouC-H, ShresthaS, YangC-D, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46(D1):D296–D302. doi:10.1093/nar/gkx106729126174
  • AgarwalV, BellGW, NamJ-W, BartelDP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005. doi:10.7554/eLife.05005
  • DweepH, GretzN. miRWalk2. 0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697.26226356
  • BackesC, KehlT, StöckelD, et al. miRPathDB: a new dictionary on microRNAs and target pathways. Nucleic Acids Res. 2016;gkw926.