138
Views
3
CrossRef citations to date
0
Altmetric
Hypothesis

Bronchial Variation: Anatomical Abnormality May Predispose Chronic Obstructive Pulmonary Disease

, , , , &
Pages 423-431 | Published online: 23 Feb 2021

References

  • GBD. Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med. 2015;2017(5):691–706.
  • Allinson JP, Hardy R, Donaldson GC, et al. Combined impact of smoking and early-life exposures on adult lung function trajectories. Am J Respir Crit Care Med. 2017;196(8):1021–1030. doi:10.1164/rccm.201703-0506OC
  • Tagiyeva N, Devereux G, Fielding S, et al. Outcomes of childhood asthma and wheezy bronchitis. A 50-year cohort study. Am J Respir Crit Care Med. 2016;193:23–30. doi:10.1164/rccm.201505-0870OC
  • Smith BM, Traboulsi H, Austin JHM, et al. and MESA Lung and SPIROMICS investigators. Human airway branch variation and chronic obstructive pulmonary disease. Proc Natl Acad Sci USA. 2018;115:E974–E981. doi:10.1073/pnas.1715564115
  • Wooten C, Patel S, Cassidy L, et al. Variations of the tracheobronchial tree: anatomical and clinical significance. Clin Anat. 2014;27:1223–1233.
  • Aktas T, Aktas F, Ozmen Z, Server S, Arici A. Large-cell lung cancer originating from tracheal bronchus - A rare case. J Pak Med Assoc. 2016;66:475–476.
  • Unlu EN, Aydin LY, Bakirci S, et al. Prevalence of the accessory cardiac bronchus on multidetector computed tomography: evaluation and proposed classification. J Thorac Imaging. 2016;31:312–317.
  • Henry BM, Cheruiyot I, Wong LM, et al. The bridging bronchus: a comprehensive review of a rare, potentially life-threatening congenital airway anomaly associated with cardiovascular defects. Pediatr Pulmonol. 2019;54:1895–1904.
  • Mi WD, Zhang CS, Wang H, et al. Measurement and analysis of the tracheobronchial tree in Chinese population using computed tomography. PLoS One. 2015;10:e0123177.
  • Mclnnis MC, Weisbrod G, Schmidt H. Advanced technologies for imaging and visualization of the tracheobronchial tree: from computed tomography and MRI to virtual endoscopy. Thorac Surg Clin. 2018;28(2):127–137. doi:10.1016/j.thorsurg.2018.01.005
  • Ohno Y, Yui M, Yoshikawa T, et al. 3D oxygen-enhanced MRI at 3T MR system: comparison with thin-section CT of quantitative capability for pulmonary functional loss assessment and clinical stage classification of COPD in smokers. J Magn Reson Imaging. 2020. doi:10.1002/jmri27441
  • Ding M, Chen Y, Guan WJ, et al. Measuring airway remodeling in patients with different COPD staging using endobronchial optical coherence tomography. Chest. 2016;150(6):1281–1290. doi:10.1016/j.chest.2016.07.033
  • Fischer AM, Varga-Szemes A, van Assen M, et al. Comparison of artificial intelligence-based fully automatic chest CT emphysema quantification to pulmonary function testing. AJR Am J Roentgenol. 2020;214:1065–1071. doi:10.2214/AJR.19.21572
  • Leung JM, Tiew PY, Aogain MM, et al. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD. Respirology. 2017;22(4):634–650. doi:10.1111/resp.13032
  • Richmond BW, Du RH, Han W, et al. Bacterial-derived neutrophilic inflammation drives lung remodeling in a mouse model of chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2018;58:736–744. doi:10.1165/rcmb.2017-0329OC
  • Witten ML, Chau B, Saez E, Boitano S, Lantz RC. Early life inhalation exposure to mine tailings dust affects lung development. Toxicol Appl Pharmacol. 2019;365:124–132. doi:10.1016/j.taap.2019.01.009
  • Wang KCW, Morton JS, Davidge ST, et al. Increased heterogeneity of airway caliber in adults rats after hypoxia-induced intrauterine growth restriction. Respirology. 2017;22:1329–1335. doi:10.1111/resp.13071
  • Piedimonte G, Harford TJ. Effects of maternal-fetal transmission of viruses and other environmental agents on lung development. Pediatr Res. 2020;87:420–426. doi:10.1038/s41390-019-0657-4
  • Mehta J, Walsh EE, Mahadevia PJ, Falsey AR. Risk factors for respiratory syncytial virus illness among patients with chronic obstructive pulmonary disease. COPD. 2013;10(3):293–299. doi:10.3109/15412555.2012.744741
  • Wang G, Kull I, Bergstrom A, et al. Early-life risk factors for reversible and irreversible airflow limitation in young adults: findings from the BAMSE birth cohort. Thorax. 2020:thoraxjnl-2020-215884. doi:10.1136/thoraxjnl-2020-215884
  • Bui DS, Lodge CJ, Burgess JA, et al. Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life. Lancet Respir Med. 2018;6(7):535–544. doi:10.1016/S2213-2600(18)30100-0
  • Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet. 2004;364(9435):709–721. doi:10.1016/S0140-6736(04)16900-6
  • Martinez FD. The origins of asthma and chronic obstructive pulmonary disease in early life. Proc Am Thorac Soc. 2009;6(3):272–277. doi:10.1513/pats.200808-092RM
  • Metzger RJ, Klein OD, Martin GR, et al. The branching programme of mouse lung development. Nature. 2008;453(7196):745–750. doi:10.1038/nature07005
  • Metzger RJ, Krasnow MA. Genetic control of branching morphogenesis. Science. 1999;284:1635–1639. doi:10.1126/science.284.5420.1635
  • Weaver M, Dunn NR, Hogan BL. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development. 2000;127:2695–2704.
  • Volcakert T, Campbell A, Dill E, et al. Localized Fgf10 expression is not required for lung branching morphogenesis but prevents differentiation of epithelial progenitors. Development. 2013;140(18):3731–3742. doi:10.1242/dev.096560
  • Xu B, Chen C, Chen H, et al. Smad1 and its target gene Wif1 coordinate BMP and Wnt signaling activities to regulate fetal lung development. Development. 2011;138:925–935. doi:10.1242/dev.062687
  • Ragland MF, Benway CJ, Lutz SM, et al. Genetic advances in Chronic Obstructive Pulmonary Disease: insights from COPDGene. Am J Respir Crit Care Med. 2019;200:677–690. doi:10.1164/rccm.201808-1455SO
  • Kim WJ, Hoffman E, Reilly J, et al. Association of COPD candidate genes with computed tomography emphysema and airway phenotypes in severe COPD. Eur Respir J. 2011;37:39–43. doi:10.1183/09031936.00173009
  • Oelsner EC, Ortega VE, Smith BM, et al. A genetic risk score associated with chronic obstructive pulmonary disease susceptibility and lung structure on computed tomography. Am J Respir Crit Care Med. 2019;200:721–731. doi:10.1164/rccm.201812-2355OC
  • Shi L, Zhu B, Xu M, et al. Selection of AECOPD-specific immunomodulatory biomarkers by integrating genomics and proteomics with clinical informatics. Cell Biol Toxicol. 2018;34:109–123.
  • Danopoulos S, Shiosaki J, Al Alam D. FGF signaling in lung development and disease: human versus mouse. Front Genet. 2019;10:170. doi:10.3389/fgene.2019.00170
  • Ren JT, Feng K, Wang P, et al. Relationship between the gene polymorphism in fibroblast growth factor-10 and susceptibility to chronic obstructive pulmonary disease 220 cases. Zhonghua Jie He He Hu Xi Za Zhi. 2013;36:935–939.
  • Zuo WL, Yang J, Strulovici-Barel Y, et al. Exaggerated BMP4 signalling alters human airway basal progenitor cell differentiation to cigarette smoking-related phenotypes. Eur Respir J. 2019;53:1702553.
  • Liu L, Xia Z, Li J, et al. Fibroblast growth factor 10 protects against particulate matter-induced airway inflammatory response through regulating inflammatory signaling and apoptosis. Am J Transl Res. 2019;11:6977–6988.
  • May AJ, Teshima THN, Noble A, et al. FGF10 is an essential regulator of tracheal submucosal gland morphogenesis. Dev Biol. 2019;451(2):158–166. doi:10.1016/j.ydbio.2019.03.017
  • Li Z, Wang J, Wang Y, et al. Bone morphogenetic protein 4 inhibits liposaccharide-induced inflammation in the airway. Eur J Immunol. 2014;44(11):3283–3294. doi:10.1002/eji.201344287
  • Jolly MK, Ward C, Eapen MS, et al. Epithelial-mesenchymal transition, a spectrum of states: role in lung development, homeostasis, and disease. Dev Dyn. 2018;247(3):346–358. doi:10.1002/dvdy.24541
  • Knight DA, Grainge CL, Stick SM, et al. Epithelial mesenchymal transition in respiratory disease: fact or Fiction. Chest. 2020;157(6):1591–1596. doi:10.1016/j.chest.2019.12.014
  • Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer. 2013;13(4):233–245. doi:10.1038/nrc3477
  • Abolhassani A, Riazi GH, Azizi E, et al. FGF10: type III epithelial mesenchymal transition and invasion in breast cancer cell lines. J Cancer. 2014;5(7):537–547. doi:10.7150/jca.7797
  • Chao CM, Yahya F, Moiseenko A, et al. Fgf10 deficiency is causative for lethality in a mouse model of bronchopulmonary dysplasia. J Pathol. 2017;241:91–103. doi:10.1002/path.4834
  • Chao CM, Moiseenko A, Kosanovic D, et al. Impact of Fgf10 deficiency on pulmonary vasculature formation in a mouse model of bronchopulmonary dysplasia. Hum Mol Genet. 2019;28:1429–1444. doi:10.1093/hmg/ddy439
  • Thebaud B, Goss KN, Laughon M, et al. Bronchopulmonary dysplasia. Nat Rev Dis Primers. 2019;5:78.
  • Sheth S, Goto L, Bhandari V, et al. Factors associated with development of early and late pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. J Perinatol. 2020;40:138–148.