101
Views
1
CrossRef citations to date
0
Altmetric
Original Research

PARC/CCL18 is Associated with Inflammation, Emphysema Severity and Application of Inhaled Corticosteroids in Hospitalized COPD Patients

, , , &
Pages 1287-1297 | Published online: 10 May 2021

References

  • Fitzmaurice C, Allen C, Barber RM; Global Burden of Disease Cancer C, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3:524–548. doi:10.1001/jamaoncol.2016.5688
  • Viniol C, Vogelmeier CF. Exacerbations of COPD. Eur Respir Rev. 2018;27:170103. doi:10.1183/16000617.0103-2017
  • Katz R. Biomarkers and surrogate markers: an FDA perspective. NeuroRx. 2004;1:189–195. doi:10.1602/neurorx.1.2.189
  • Gunther C, Bello-Fernandez C, Kopp T, et al. CCL18 is expressed in atopic dermatitis and mediates skin homing of human memory T cells. J Immunol. 2005;174:1723–1728. doi:10.4049/jimmunol.174.3.1723
  • Legendre B, Tokarski C, Chang Y, et al. The disulfide bond between cysteine 10 and cysteine 34 is required for CCL18 activity. Cytokine. 2013;64:463–470. doi:10.1016/j.cyto.2013.04.028
  • Guan P, Burghes AH, Cunningham A, et al. Genomic organization and biological characterization of the novel human CC chemokine DC-CK-1/PARC/MIP-4/SCYA18. Genomics. 1999;56:296–302. doi:10.1006/geno.1998.5635
  • Adema GJ, Hartgers F, Verstraten R, et al. A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells. Nature. 1997;387:713–717. doi:10.1038/42716
  • Catusse J, Wollner S, Leick M, Schrottner P, Schraufstatter I, Burger M. Attenuation of CXCR4 responses by CCL18 in acute lymphocytic leukemia B cells. J Cell Physiol. 2010;225:792–800. doi:10.1002/jcp.22284
  • Vulcano M, Struyf S, Scapini P, et al. Unique regulation of CCL18 production by maturing dendritic cells. J Immunol. 2003;170:3843–3849. doi:10.4049/jimmunol.170.7.3843
  • Gavala ML, Kelly EA, Esnault S, et al. Segmental allergen challenge enhances chitinase activity and levels of CCL18 in mild atopic asthma. Clin Exp Allergy. 2013;43:187–197. doi:10.1111/cea.12032
  • de Nadai P, Charbonnier AS, Chenivesse C, et al. Involvement of CCL18 in allergic asthma. J Immunol. 2006;176:6286–6293. doi:10.4049/jimmunol.176.10.6286
  • Atamas SP, Luzina IG, Choi J, et al. Pulmonary and activation-regulated chemokine stimulates collagen production in lung fibroblasts. Am J Respir Cell Mol Biol. 2003;29:743–749. doi:10.1165/rcmb.2003-0078OC
  • Kraaijeveld AO, de Jager SC, de Jager WJ, et al. CC chemokine ligand-5 (CCL5/RANTES) and CC chemokine ligand-18 (CCL18/PARC) are specific markers of refractory unstable angina pectoris and are transiently raised during severe ischemic symptoms. Circulation. 2007;116:1931–1941. doi:10.1161/CIRCULATIONAHA.107.706986
  • Prasse A, Pechkovsky DV, Toews GB, et al. CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis. Arthritis Rheum. 2007;56:1685–1693. doi:10.1002/art.22559
  • Struyf S, Schutyser E, Gouwy M, et al. PARC/CCL18 is a plasma CC chemokine with increased levels in childhood acute lymphoblastic leukemia. Am J Pathol. 2003;163:2065–2075. doi:10.1016/S0002-9440(10)63564-X
  • Munoz-Esquerre M, Lopez-Sanchez M, Escobar I, et al. Systemic and pulmonary vascular remodelling in chronic obstructive pulmonary disease. PLoS One. 2016;11:e0152987. doi:10.1371/journal.pone.0152987
  • Hieshima K, Imai T, Baba M, et al. A novel human CC chemokine PARC that is most homologous to macrophage-inflammatory protein-1 alpha/LD78 alpha and chemotactic for T lymphocytes, but not for monocytes. J Immunol. 1997;159:1140–1149.
  • Burney PG, Hooper R. Forced vital capacity, airway obstruction and survival in a general population sample from the USA. Thorax. 2011;66:49–54. doi:10.1136/thx.2010.147041
  • Weiss ST, Segal MR, Sparrow D, Wager C. Relation of FEV1 and peripheral blood leukocyte count to total mortality. The Normative Aging Study. Am J Epidemiol. 1995;142:493–498; discussion 499–503. doi:10.1093/oxfordjournals.aje.a117665
  • Schunemann HJ, Dorn J, Grant BJ, Winkelstein W, Trevisan M. Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo Health Study. Chest. 2000;118:656–664. doi:10.1378/chest.118.3.656
  • Young RP, Hopkins R, Eaton TE. Forced expiratory volume in one second: not just a lung function test but a marker of premature death from all causes. Eur Respir J. 2007;30:616–622. doi:10.1183/09031936.00021707
  • Myint PK, Luben RN, Surtees PG, et al. Respiratory function and self-reported functional health: EPIC-Norfolk population study. Eur Respir J. 2005;26:494–502. doi:10.1183/09031936.05.00023605
  • Pinto-Plata V, Toso J, Lee K, et al. Profiling serum biomarkers in patients with COPD: associations with clinical parameters. Thorax. 2007;62:595–601. doi:10.1136/thx.2006.064428
  • Hurst JR, Donaldson GC, Perera WR, et al. Use of plasma biomarkers at exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;174:867–874. doi:10.1164/rccm.200604-506OC
  • Sin DD, Miller BE, Duvoix A, et al.; Investigators E. Serum PARC/CCL-18 concentrations and health outcomes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183:1187–1192. doi:10.1164/rccm.201008-1220OC
  • Yao TC, Du G, Han L, et al. Genome-wide association study of lung function phenotypes in a founder population. J Allergy Clin Immunol. 2014;133:248. doi:10.1016/j.jaci.2013.06.018
  • Misof BM, Moreira CA, Klaushofer K, Roschger P. Skeletal implications of chronic obstructive pulmonary disease. Curr Osteoporos Rep. 2016;14:49–53. doi:10.1007/s11914-016-0301-8
  • Tin SS, Wiwanitkita V. Osteoporosis in chronic obstructive pulmonary disease. Lung India. 2015;32:200. doi:10.4103/0970-2113.152674
  • Kiyokawa H, Muro S, Oguma T, et al. Impact of COPD exacerbations on osteoporosis assessed by chest CT scan. COPD. 2012;9:235–242. doi:10.3109/15412555.2011.650243
  • Vestbo J, Anderson W, Coxson HO, et al.; investigators E. Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE). Eur Respir J. 2008;31:869–873. doi:10.1183/09031936.00111707
  • Schutyser E, Richmond A, Van Damme J. Involvement of CC chemokine ligand 18 (CCL18) in normal and pathological processes. J Leukoc Biol. 2005;78:14–26. doi:10.1189/jlb.1204712
  • Tsicopoulos A, Chang Y, Ait Yahia S, de Nadai P, Chenivesse C. Role of CCL18 in asthma and lung immunity. Clin Exp Allergy. 2013;43:716–722. doi:10.1111/cea.12065
  • Hagg DA, Olson FJ, Kjelldahl J, et al. Expression of chemokine (C-C motif) ligand 18 in human macrophages and atherosclerotic plaques. Atherosclerosis. 2009;204:e15–20. doi:10.1016/j.atherosclerosis.2008.10.010
  • Chen J, Yao Y, Gong C, et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell. 2011;19:541–555. doi:10.1016/j.ccr.2011.02.006
  • Islam SA, Ling MF, Leung J, Shreffler WG, Luster AD. Identification of human CCR8 as a CCL18 receptor. J Exp Med. 2013;210:1889–1898. doi:10.1084/jem.20130240
  • Guzel A, Karadag A, Okuyucu A, Alacam H, Kucuk Y. The evaluation of serum surfactant protein D (SP-D) levels as a biomarker of lung injury in tuberculosis and different lung diseases. Clin Lab. 2014;60:1091–1098. doi:10.7754/Clin.Lab.2013.130323
  • Sondergaard J, Halling A. The PROTECCT-M study: a cohort study investigating associations between novel specific biomarkers, patient-related, healthcare system markers and the trajectory of COPD patients treated in primary care. BMC Pulm Med. 2014;14:88. doi:10.1186/1471-2466-14-88
  • Agusti A, Sin DD. Biomarkers in COPD. Clin Chest Med. 2014;35:131–141. doi:10.1016/j.ccm.2013.09.006
  • Johansson SL, Tan Q, Holst R, et al. Surfactant protein D is a candidate biomarker for subclinical tobacco smoke-induced lung damage. Am J Physiol Lung Cell Mol Physiol. 2014;306:L887–895. doi:10.1152/ajplung.00340.2013
  • Kelly E, Owen CA, Pinto-Plata V, Celli BR. The role of systemic inflammatory biomarkers to predict mortality in chronic obstructive pulmonary disease. Expert Rev Respir Med. 2013;7:57–64. doi:10.1586/ers.12.82
  • Eid AA, Ionescu AA, Nixon LS, et al. Inflammatory response and body composition in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1414–1418. doi:10.1164/ajrccm.164.8.2008109
  • Mullerova H, Maselli DJ, Locantore N, et al. Hospitalized exacerbations of COPD: risk factors and outcomes in the ECLIPSE cohort. Chest. 2015;147:999–1007. doi:10.1378/chest.14-0655
  • Dev D, Wallace E, Sankaran R, et al. Value of C-reactive protein measurements in exacerbations of chronic obstructive pulmonary disease. Respir Med. 1998;92:664–667. doi:10.1016/S0954-6111(98)90515-7
  • Pinto-Plata V, Casanova C, Mullerova H, et al. Inflammatory and repair serum biomarker pattern: association to clinical outcomes in COPD. Respir Res. 2012;13:71. doi:10.1186/1465-9921-13-71
  • Ejiofor S, Turner AM. Pharmacotherapies for COPD. Clin Med Insights Circ Respir Pulm Med. 2013;7:17–34. doi:10.4137/CCRPM.S7211
  • Barnes PJ. Inhaled corticosteroids in COPD: a controversy. Respiration. 2010;80:89–95. doi:10.1159/000315416
  • Kaplan AG. Applying the wisdom of stepping down inhaled corticosteroids in patients with COPD: a proposed algorithm for clinical practice. Int J Chron Obstruct Pulmon Dis. 2015;10:2535–2548. doi:10.2147/COPD.S93321