108
Views
2
CrossRef citations to date
0
Altmetric
Original Research

MiR-361-5p/abca1 and MiR-196-5p/arhgef12 Axis Involved in γ-Sitosterol Inducing Dual Anti-Proliferative Effects on Bronchial Epithelial Cells of Chronic Obstructive Pulmonary Disease

, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 2741-2753 | Published online: 05 Oct 2021

References

  • Vaz M, Hwang SY, Kagiampakis I, et al. Chronic cigarette smoke-induced epigenomic changes precede sensitization of bronchial epithelial cells to single-step transformation by KRAS mutations. Cancer Cell. 2017;32(3):360–376 e6. doi:10.1016/j.ccell.2017.08.006
  • Steiling K, van den Berge M, Hijazi K, et al. A dynamic bronchial airway gene expression signature of chronic obstructive pulmonary disease and lung function impairment. Am J Respir Crit Care Med. 2013;187(9):933–942. doi:10.1164/rccm.201208-1449OC
  • Ouadah Y, Rojas ER, Riordan DP, Capostagno S, Kuo CS, Krasnow MA. Rare pulmonary cells are stem cells regulated by Rb, p53, and notch. Cell. 2019;179(2):403–416e23. doi:10.1016/j.cell.2019.09.010
  • Ghebre MA, Pang PH, Diver S, et al. Biological exacerbation clusters demonstrate asthma and chronic obstructive pulmonary disease overlap with distinct mediator and microbiome profiles. J Allergy Clin Immunol. 2018;141(6):2027–2036 e12. doi:10.1016/j.jaci.2018.04.013
  • Jing Y, Gimenes JA, Mishra R, et al. NOTCH3 contributes to rhinovirus-induced goblet cell hyperplasia in COPD airway epithelial cells. Thorax. 2019;74(1):18–32. doi:10.1136/thoraxjnl-2017-210593
  • Wilkinson T. Understanding disease mechanisms at the nanoscale: endothelial apoptosis and microparticles in COPD. Thorax. 2016;71(12):1078–1079. doi:10.1136/thoraxjnl-2016-208993
  • Skronska-Wasek W, Mutze K, Baarsma HA, et al. Reduced frizzled receptor 4 expression prevents WNT/beta-catenin-driven alveolar lung repair in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2017;196(2):172–185. doi:10.1164/rccm.201605-0904OC
  • Faiz A, Steiling K, Roffel MP, et al. Effect of long-term corticosteroid treatment on microRNA and gene-expression profiles in COPD. Eur Respir J. 2019;53(4):1801202. doi:10.1183/13993003.01202-2018
  • Conickx G, Mestdagh P, Avila Cobos F, et al. MicroRNA profiling reveals a role for MicroRNA-218-5p in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2017;195(1):43–56. doi:10.1164/rccm.201506-1182OC
  • Van Pottelberge GR, Mestdagh P, Bracke KR, et al. MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183(7):898–906. doi:10.1164/rccm.201002-0304OC
  • Cazorla-Rivero S, Mura-Escorche G, Gonzalvo-Hernandez F, Mayato D, Cordoba-Lanus E, Casanova C. Circulating miR-1246 in the progression of chronic obstructive pulmonary disease (COPD) in patients from the BODE cohort. Int J Chron Obstruct Pulmon Dis. 2020;15:2727–2737. doi:10.2147/COPD.S271864
  • Lacedonia D, Palladino GP, Foschino-Barbaro MP, Scioscia G, Carpagnano GE. Expression profiling of miRNA-145 and miRNA-338 in serum and sputum of patients with COPD, asthma, and asthma-COPD overlap syndrome phenotype. Int J Chron Obstruct Pulmon Dis. 2017;12:1811–1817. doi:10.2147/COPD.S130616
  • Paschalaki KE, Zampetaki A, Baker JR, et al. Downregulation of MicroRNA-126 augments DNA damage response in cigarette smokers and patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2018;197(5):665–668. doi:10.1164/rccm.201706-1304LE
  • Osei ET, Florez-Sampedro L, Tasena H, et al. miR-146a-5p plays an essential role in the aberrant epithelial-fibroblast cross-talk in COPD. Eur Respir J. 2017;49(5):1602538. doi:10.1183/13993003.02538-2016
  • Shigemura M, Lecuona E, Angulo M, et al. Hypercapnia increases airway smooth muscle contractility via caspase-7-mediated miR-133a-RhoA signaling. Sci Transl Med. 2018;10(457):eaat1662. doi:10.1126/scitranslmed.aat1662
  • Garros RF, Paul R, Connolly M, et al. MicroRNA-542 promotes mitochondrial dysfunction and SMAD activity and is elevated in intensive care unit-acquired weakness. Am J Respir Crit Care Med. 2017;196(11):1422–1433. doi:10.1164/rccm.201701-0101OC
  • Best MM, Duncan CH, Van Loon EJ, Wathen JD. Lowering of serum cholesterol by the administration of a plant sterol. Circulation. 1954;10(2):201–206. doi:10.1161/01.cir.10.2.201
  • Balamurugan R, Duraipandiyan V, Ignacimuthu S. Antidiabetic activity of gamma-sitosterol isolated from Lippia nodiflora L. in streptozotocin induced diabetic rats. Eur J Pharmacol. 2011;667(1–3):410–418. doi:10.1016/j.ejphar.2011.05.025
  • Adnan M, Nazim Uddin Chy M, Mostafa Kamal ATM, et al. Evaluation of anti-nociceptive and anti-inflammatory activities of the methanol extract of Holigarna caustica (Dennst.) Oken leaves. J Ethnopharmacol. 2019;236:401–411. doi:10.1016/j.jep.2019.01.025
  • Sundarraj S, Thangam R, Sreevani V, et al. Gamma-sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. J Ethnopharmacol. 2012;141(3):803–809. doi:10.1016/j.jep.2012.03.014
  • Balamurugan R, Stalin A, Ignacimuthu S. Molecular docking of gamma-sitosterol with some targets related to diabetes. Eur J Med Chem. 2012;47(1):38–43. doi:10.1016/j.ejmech.2011.10.007
  • Lee W, Thomas PS. Oxidative stress in COPD and its measurement through exhaled breath condensate. Clin Transl Sci. 2009;2(2):150–155. doi:10.1111/j.1752-8062.2009.00093.x
  • Puchelle E, Zahm JM, Tournier JM, Coraux C. Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2006;3(8):726–733. doi:10.1513/pats.200605-126SF
  • Klimek B, Modnicki D. Terpenoids and sterols from Nepeta cataria L. var. citriodora (Lamiaceae). Acta Pol Pharm. 2005;62(3):231–235.
  • Chang F, Yu D, Wang H, et al. Authentication of Saposhnikovia divaricata (Trucz.) Schischk and its two adulterants based on their macroscopic morphology and microscopic characteristics. Microsc Res Tech. 2021;84(5):1089–1094. doi:10.1002/jemt.23651
  • Gilani AH, Shah AJ, Zubair A, et al. Chemical composition and mechanisms underlying the spasmolytic and bronchodilatory properties of the essential oil of Nepeta cataria L. J Ethnopharmacol. 2009;121(3):405–411. doi:10.1016/j.jep.2008.11.004
  • Fu J, Zeng Z, Zhang L, Wang Y, Li P. 4ʹ-O-beta-D-glucosyl-5-O-methylvisamminol ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production by suppressing the NF-kappaB and MAPK signaling pathways. Braz J Med Biol Res. 2020;53(12):e10109. doi:10.1590/1414-431X202010109
  • Rodrigo-Munoz JM, Rial MJ, Sastre B, et al. Circulating miRNAs as diagnostic tool for discrimination of respiratory disease: asthma, asthma-chronic obstructive pulmonary disease (COPD) overlap and COPD. Allergy. 2019;74(12):2491–2494. doi:10.1111/all.13916
  • Liu PF, Yan P, Zhao DH, et al. The effect of environmental factors on the differential expression of miRNAs in patients with chronic obstructive pulmonary disease: a Pilot Clinical Study. Int J Chron Obstruct Pulmon Dis. 2018;13:741–751. doi:10.2147/COPD.S156865
  • Doherty DF, Nath S, Poon J, et al. Protein phosphatase 2A reduces cigarette smoke-induced cathepsin S and loss of lung function. Am J Respir Crit Care Med. 2019;200(1):51–62. doi:10.1164/rccm.201808-1518OC.
  • Lai Q, Yuan G, Shen L, et al. Oxoeicosanoid receptor inhibition alleviates acute myocardial infarction through activation of BCAT1. Basic Res Cardiol. 2021;116(1):3. doi:10.1007/s00395-021-00844-0
  • Liu R, Liu J, Wu P, Yi H, Zhang B, Huang W. Flotillin-2 promotes cell proliferation via activating the c-Myc/BCAT1 axis by suppressing miR-33b-5p in nasopharyngeal carcinoma. Aging. 2021;13(6):8078–8094. doi:10.18632/aging.202726
  • Chen YY, Ho HL, Lin SC, Hsu CY, Ho DM. Loss of BCAT1 expression is a sensitive marker for IDH-mutant diffuse glioma. Neurosurgery. 2019;85(3):335–342. doi:10.1093/neuros/nyy338
  • Tonjes M, Barbus S, Park YJ, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med. 2013;19(7):901–908. doi:10.1038/nm.3217
  • Luo L, Sun W, Zhu W, et al. BCAT1 decreases the sensitivity of cancer cells to cisplatin by regulating mTOR-mediated autophagy via branched-chain amino acid metabolism. Cell Death Dis. 2021;12(2):169. doi:10.1038/s41419-021-03456-7
  • Papathanassiu AE, Ko JH, Imprialou M, et al. BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nat Commun. 2017;8(1):16040. doi:10.1038/ncomms16040
  • Xie Y, Gao L, Xu C, et al. ARHGEF12 regulates erythropoiesis and is involved in erythroid regeneration after chemotherapy in acute lymphoblastic leukemia patients. Haematologica. 2020;105(4):925–936. doi:10.3324/haematol.2018.210286
  • Springelkamp H, Iglesias AI, Cuellar-Partida G, et al. ARHGEF12 influences the risk of glaucoma by increasing intraocular pressure. Hum Mol Genet. 2015;24(9):2689–2699. doi:10.1093/hmg/ddv027
  • Xing XQ, Li B, Xu SL, Liu J, Zhang CF, Yang J. MicroRNA-214-3p regulates hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration by targeting ARHGEF12. Med Sci Monit. 2019;25:5738–5746. doi:10.12659/MSM.915709
  • Zheng Y, Ouyang Q, Fu R, et al. The cyclohexene derivative MC-3129 exhibits antileukemic activity via RhoA/ROCK1/PTEN/PI3K/Akt pathway-mediated mitochondrial translocation of cofilin. Cell Death Dis. 2018;9(6):656. doi:10.1038/s41419-018-0689-4.
  • Li G, Liu L, Shan C, et al. RhoA/ROCK/PTEN signaling is involved in AT-101-mediated apoptosis in human leukemia cells in vitro and in vivo. Cell Death Dis. 2014;5(1):e998. doi:10.1038/cddis.2013.519.