191
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Identification of the Key Immune-Related Genes in Chronic Obstructive Pulmonary Disease Based on Immune Infiltration Analysis

, , , , , & show all
Pages 13-24 | Published online: 04 Jan 2022

References

  • Halpin D, Celli BR, Criner GJ, et al. The GOLD Summit on chronic obstructive pulmonary disease in low- and middle-income countries. Int J Tuberc Lung Dis. 2019;23(11):1131–1141. doi:10.5588/ijtld.19.0397
  • Zhao J, Cheng W, He X, et al. Chronic obstructive pulmonary disease molecular subtyping and pathway deviation-based candidate gene identification. Cell J. 2018;20(3):326–332. doi:10.22074/cellj.2018.5412
  • Liu X, Qu J, Xue W, et al. Bioinformatics-based identification of potential microRNA biomarkers in frequent and non-frequent exacerbators of COPD. Int J COPD. 2018;13(50):1217–1228. doi:10.2147/COPD.S163459
  • Chen W, Hong Y-Q, Meng Z-L. Bioinformatics analysis of molecular mechanisms of chronic obstructive pulmonary disease. Eur Rev Med Pharmacol Sci. 2014;18(23):3557–3563.
  • Pothirat C, Chaiwong W, Liwsrisakun C, et al. Acute effects of air pollutants on daily mortality and hospitalizations due to cardiovascular and respiratory diseases. J Thorac Dis. 2019;11(7):3070–3083. doi:10.21037/jtd.2019.07.37
  • Vij N, Chandramani P, Westphal CV, et al. Cigarette smoke induced autophagy-impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis. Am J Physiol Cell Physiol. 2016;314(1):C73–C87. doi:10.1152/ajpcell.00110.2016
  • Feghali-Bostwick CA, Gadgil AS, Otterbein LE, et al. Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(2):156–163. doi:10.1164/rccm.200701-014OC
  • Laucho-Contreras ME, Polverino F, Gupta K, et al. Protective role for club cell secretory protein-16 (CC16) in the development of COPD. Eur Respir J. 2015;45(6):1544–1556. doi:10.1183/09031936.00134214
  • Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–457.
  • Mori H, Cardiff RD. Methods of immunohistochemistry and immunofluorescence: converting invisible to visible. Methods Mol Biol. 2016;1458:1–12.
  • Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–550. doi:10.1038/s41591-018-0014-x
  • Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–457. doi:10.1038/nmeth.3337
  • Jin KW, Hyun LJ, Seung LJ, et al. Comprehensive analysis of transcriptome sequencing data in the lung tissues of COPD subjects. Int J Genomics. 2015;2015:206937. doi:10.1155/2015/206937
  • Morrow JD, Zhou X, Lao T, et al. Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Sci Rep. 2017;7(1):44232. doi:10.1038/srep44232
  • Harris MA, Clark J, Ireland A, et al.; Gene Ontology Consortium. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004;32(D1):D258–61. doi:10.1093/nar/gkh036.
  • Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28(1):27–30. doi:10.1093/nar/28.1.27
  • Schatteman GC, Gibbs L, Lanahan AA, et al. Expression of NGF receptor in the developing and adult primate central nervous system. J Neurosci. 1988;8(3):860–873. doi:10.1523/JNEUROSCI.08-03-00860.1988
  • Kim IY, Jung J, Jang M, et al. 1H NMR-based metabolomic study on resistance to diet-induced obesity in AHNAK knock-out mice. Biochem Biophys Res Commun. 2010;403(3–4):428–434. doi:10.1016/j.bbrc.2010.11.048
  • Shin JH, Kim IY, Kim YN, et al. Obesity resistance and enhanced insulin sensitivity in ahnak-/- mice fed a high fat diet are related to impaired adipogenesis and increased energy expenditure. PLoS One. 2015;10(10):e0139720. doi:10.1371/journal.pone.0139720
  • Lee IH, You JO, Ha KS, et al. AHNAK-mediated activation of phospholipase C-gamma1 through protein kinase C. J Biol Chem. 2004;279(25):26645–26653. doi:10.1074/jbc.M311525200
  • Won PJ, Yong KI, Won CJ, et al. AHNAK loss in mice promotes type ii pneumocyte hyperplasia and lung tumor development. Mol Cancer Res. 2018;16(8):1287–1298..
  • Shankar J, Messenberg A, Chan J, Underhill TM, Foster LJ, Nabi IR. Pseudopodial actin dynamics control epithelial-mesenchymal transition in metastatic cancer cells. Cancer Res. 2010;70(9):3780–3790. doi:10.1158/0008-5472.CAN-09-4439
  • Dumitru CA, Bankfalvi A, Gu X, Zeidler R, Brandau S, Lang S. AHNAK and inflammatory markers predict poor survival in laryngeal carcinoma. PLoS One. 2013;8(2):e56420. doi:10.1371/journal.pone.0056420
  • Zhang Z, Liu X, Huang R, Liu X, Liang Z, Liu T. Upregulation of nucleoprotein AHNAK is associated with poor outcome of pancreatic ductal adenocarcinoma prognosis via mediating epithelial-mesenchymal transition. J Cancer. 2019;10(16):3860–3870. doi:10.7150/jca.31291
  • Ivana N, Natalie T, Vonk JM, et al. A genome-wide linkage study for chronic obstructive pulmonary disease in a Dutch genetic isolate identifies novel rare candidate variants. Front Genet. 2018;9:133. doi:10.3389/fgene.2018.00133
  • Georgas K, Burridge L, Smith K, et al. Assignment of the human slit homologue slit2 to human chromosome band 4p15.2. Cytogenet Cell Genet. 1999;86(3–4):246–247. doi:10.1159/000015351
  • Gonzalez DM, Medici D. Signaling mechanisms of the epithelial–mesenchymal transition. Sci Signal. 2014;7(344):8. doi:10.1126/scisignal.2005189
  • Nieto MA, Huang RYJ, Jackson RA, Thiery JP. EMT: 2016. Cell. 2016;166(1):21–45. doi:10.1016/j.cell.2016.06.028
  • Prasad A, Fernandis AZ, Rao Y, et al. Slit protein-mediated inhibition of CXCR4-induced chemotactic and chemoinvasive signaling pathways in breast cancer cells. J Biol Chem. 2004;279(10):9115–9124. doi:10.1074/jbc.M308083200
  • Wang J, Chen T, Yu X, et al. Identification and validation of smoking-related genes in lung adenocarcinoma using an in vitro carcinogenesis model and bioinformatics analysis. J Transl Med. 2020;18(1). doi:10.1186/s12967-020-02474-x.
  • Russo RC, Garcia CC, Teixeira MM, et al. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol. 2014;10(5):593–619. doi:10.1586/1744666X.2014.894886
  • Casilli F, Bianchini A, Gloaguen I, et al. Inhibition of interleukin-8 (CXCL8/IL-8) responses by repertaxin, a new inhibitor of the chemokine receptors CXCR1 and CXCR2. Biochem Pharmacol. 2005;69(3):385–394. doi:10.1016/j.bcp.2004.10.007
  • Chapman RW, Phillips JE, Hipkin RW, et al. CXCR2 antagonists for the treatment of pulmonary disease. Pharmacol Ther. 2009;121(1):55–68. doi:10.1016/j.pharmthera.2008.10.005
  • Stefano AD, Caramori G, Gnemmi I, et al. Association of increased CCL5 and CXCL7 chemokine expression with neutrophil activation in severe stable COPD. Thorax. 2009;64(11):968. doi:10.1136/thx.2009.113647
  • Loetscher P, Seitz M, Clark-Lewis I, et al. Both interleukin-8 receptors independently mediate chemotaxis: Jurkat cells transfected with IL-8R1 or IL-8R2 migrate in response to IL-8, GRO α and NAP-2. FEBS Lett. 1994;341(2–3):187–192. doi:10.1016/0014-5793(94)80454-0
  • Jones SA, Wolf M, Qin S, et al. Different functions for the interleukin 8 receptors (IL-8R) of human neutrophil leuko- cytes: NADPH oxidase and phospholipase D are activated through IL-8R1 but not IL-8R2. Proc Natl Acad Sci U S A. 1996;93(13):6682–6686. doi:10.1073/pnas.93.13.6682
  • Ha H, Debnath B, Neamati N. Role of the CXCL8-CXCR1/2 Axis in Cancer and Inflammatory Diseases. Theranostics. 2017;7(6):1543–1588. doi:10.7150/thno.15625
  • Yamagata T, Sugiura H, Yokoyama T, et al. Overexpression of CD-11b and CXCR1 on circulating neutrophils: its possible role in COPD. Chest. 2007;132(3):890–899. doi:10.1378/chest.07-0569
  • Qiu Y, Zhu J, Bandi V, et al. Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168(8):968–975.
  • Lazaar AL, Miller BE, Tabberer M. Effect of the CXCR2 antagonist danirixin on symptoms and health status in COPD. Eur Respir J. 2018;52(4):1801020. doi:10.1183/13993003.01020-2018
  • Lonergan M, Dicker AJ, Crichton ML, et al. Blood neutrophil counts are associated with exacerbation frequency and mortality in COPD. Respiratory Research. 2020;21(1). doi:10.1186/s12931-020-01436-7.
  • Pease D, Sabroe I. The role of interleukin-8 and its receptors in inflammatory lung disease. Am J Respir Med. 2002;1(1):19–25. doi:10.1007/BF03257159
  • Keir HR, Richardson H, Fillmore C, et al. CXCL-8-dependent and -independent neutrophil activation in COPD: experiences from a pilot study of the CXCR2 antagonist danirixin. ERJ Open Res. 2020;6(4):00583–2020. doi:10.1183/23120541.00583-2020
  • Traves SL, Smith SJ, Barnes PJ, et al. Specific CXC but not CC chemokines cause elevated monocyte migration in COPD: a role for CXCR2. J Leukoc Biol. 2004;76(2):441–450. doi:10.1189/jlb.1003495
  • Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 1998;273(23):14363–14367. doi:10.1074/jbc.273.23.14363
  • Qi Y, Qi L, Qiu M, et al. Hypermethylation of tumor necrosis factor decoy receptor gene in non‑small cell lung cancer. Oncol Lett. 2020;20(1):155–164. doi:10.3892/ol.2020.11565
  • Cong Z, Pan R, Hu H, et al. TNFRSF10C methylation is a new epigenetic biomarker for colorectal cancer. PeerJ. 2018;6(9):e5336. doi:10.7717/peerj.5336
  • Kilani B, Cornelis F, Olaso R, et al Investigation of candidate gene copy number identifies FCGR3B as a potential biomarker for rheumatoid arthritis. Clin Exp Rheumatol. 2019;37(6):923–928.
  • Zheng Z, Yu R, Gao C, et al. Low copy number of FCGR3B is associated with lupus nephritis in a Chinese population. Exp Ther Med. 2017;14(5):4497–4502. doi:10.3892/etm.2017.5069
  • Leung JM, Niikura M, Yang C, et al. COVID-19 and COPD. Eur Respir J. 2020;56(2):2002108. doi:10.1183/13993003.02108-2020