370
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Updated Perspectives on the Role of Biomechanics in COPD: Considerations for the Clinician

ORCID Icon, ORCID Icon, , &
Pages 2653-2675 | Received 10 May 2022, Accepted 24 Sep 2022, Published online: 17 Oct 2022

References

  • Saey D, Debigare R, LeBlanc P., et al. Contractile leg fatigue after cycle exercise: a factor limiting exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168(4):425–430. doi:10.1164/rccm.200208-856OC
  • Seymour JM, Spruit MA, Hopkinson NS, et al. The prevalence of quadriceps weakness in COPD and the relationship with disease severity. Eur Respir J. 2010;36(1):81–88. doi:10.1183/09031936.00104909
  • Gea J, Agusti A, Roca J. Pathophysiology of muscle dysfunction in COPD. J Appl Physiol. 2013;114(9):1222–1234. doi:10.1152/japplphysiol.00981.2012
  • Barreiro E, Gea J. Molecular and biological pathways of skeletal muscle dysfunction in chronic obstructive pulmonary disease. Chron Respir Dis. 2016;13(3):297–311. doi:10.1177/1479972316642366
  • Barreiro E, Jaitovich A. Muscle atrophy in chronic obstructive pulmonary disease: molecular basis and potential therapeutic targets. J Thorac Dis. 2018;10(Suppl 12):S1415–S1424. doi:10.21037/jtd.2018.04.168
  • Gosker HR, Wouters EF, van der Vusse GJ, Schols AM. Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. Am J Clin Nutr. 2000;71(5):1033–1047. doi:10.1093/ajcn/71.5.1033
  • Jaitovich A, Barreiro E. Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. What We Know and Can Do for Our Patients. Am J Respir Crit Care Med. 2018;198(2):175–186. doi:10.1164/rccm.201710-2140CI
  • Mathur S, Brooks D, Carvalho C. Structural alterations of skeletal muscle in COPD. Front Physiol. 2014;5::104 doi:10.3389/fphys.2014.00104.
  • Tudorache E, Oancea C, Avram C, Fira-Mladinescu O, Petrescu L, Timar B. Balance impairment and systemic inflammation in chronic obstructive pulmonary disease. COPD. 2015;1847. doi:10.2147/COPD.S89814
  • Holland AE, Spruit MA, Troosters T, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428–1446. doi:10.1183/09031936.00150314
  • Jirange P, Vaishali K, Sinha MK, Bairapareddy KC, Alaparthi GK, Melani AS. A Cross-Sectional Study on Balance Deficits and Gait Deviations in COPD Patients. Canadian Respir J. 2021;2021:1–5. doi:10.1155/2021/6675088
  • Liu WY, Spruit MA, Delbressine JM, et al. Spatiotemporal gait characteristics in patients with COPD during the Gait Real-time Analysis Interactive Lab-based 6-minute walk test. PLoS One. 2017;12(12):e0190099. doi:10.1371/journal.pone.0190099
  • Morlino P, Balbi B, Guglielmetti S, et al. Gait abnormalities of COPD are not directly related to respiratory function. Gait Posture. 2017;58:352–357. doi:10.1016/j.gaitpost.2017.08.020
  • Yentes JM, Sayles H, Meza J, Mannino DM, Rennard SI, Stergiou N. Walking abnormalities are associated with COPD: an investigation of the NHANES III dataset. Respir Med. 2011;105(1):80–87. doi:10.1016/j.rmed.2010.06.007
  • Butcher SJ, Meshke JM, Sheppard MS. Reductions in functional balance, coordination, and mobility measures among patients with stable chronic obstructive pulmonary disease. J Cardiopulm Rehabil. 2004;24(4):274–280 doi:10.1097/00008483-200407000-00013.
  • de Castro LA, Ribeiro LR, Mesquita R, et al. Static and Functional Balance in Individuals With COPD: comparison With Healthy Controls and Differences According to Sex and Disease Severity. Respir Care. 2016;61(11):1488–1496. doi:10.4187/respcare.04749
  • Troosters T, Demeyer H. Physical Inactivity as a Missing Link in Understanding the Progression of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2015;192(3):267–269 doi:10.1164/rccm.201506-1123ED.
  • American Society of Biomechanics: about; 2021. Available from: https://asbweb.org/about/. Accessed December 13, 2021.
  • Stokes MJ, Dalton PA. Acoustic myography for investigating human skeletal muscle fatigue. J Appl Physiol. 1991;71(4):1422–1426. doi:10.1152/jappl.1991.71.4.1422
  • Oster G, Jaffe JS. Low frequency sounds from sustained contraction of human skeletal muscle. Biophys J. 1980;30(1):119–127. doi:10.1016/S0006-3495(80)85080-6
  • Yan S, Sinderby C, Bielen P, Beck J, Comtois N, Sliwinski P. Expiratory muscle pressure and breathing mechanics in chronic obstructive pulmonary disease. Eur Respir J. 2000;16(4):684–690. doi:10.1034/j.1399-3003.2000.16d20.x
  • Mador MJ, Deniz O, Aggarwal A, Kufel TJ. Quadriceps fatigability after single muscle exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168(1):102–108. doi:10.1164/rccm.200202-080OC
  • Roig M, Eng JJ, Road JD, Reid WD. Falls in patients with chronic obstructive pulmonary disease: a call for further research. Respir Med. 2009;103(9):1257–1269. doi:10.1016/j.rmed.2009.03.022
  • Beauchamp MK, Hill K, Goldstein RS, Janaudis-Ferreira T, Brooks D. Impairments in balance discriminate fallers from non-fallers in COPD. Respir Med. 2009;103(12):1885–1891. doi:10.1016/j.rmed.2009.06.008
  • Nantsupawat N, Lane P, Siangpraipunt O, Gadwala S, Nugent K. Gait Characteristics in Patients With Chronic Obstructive Pulmonary Disease. J Prim Care Community Health. 2015;6(4):222–226. doi:10.1177/2150131915577207
  • Steidl EMDS. Outcomes of manual therapy on the biomechanics of swallowing in individuals with COPD. Codas. 2021;33(5):e20200203. doi:10.1590/2317-1782/20192020203
  • Bergen G, Stevens MR, Burns ER. Falls and Fall Injuries Among Adults Aged >/=65 Years - United States, 2014. MMWR Morb Mortal Wkly Rep. 2016;65(37):993–998. doi:10.15585/mmwr.mm6537a2
  • Tricco AC, Thomas SM, Veroniki AA, et al. Comparisons of Interventions for Preventing Falls in Older Adults: a Systematic Review and Meta-analysis. JAMA. 2017;318(17):1687–1699. doi:10.1001/jama.2017.15006
  • Roig M, Eng JJ, MacIntyre DL, et al. Falls in people with chronic obstructive pulmonary disease: an observational cohort study. Respir Med. 2011;105(3):461–469. doi:10.1016/j.rmed.2010.08.015
  • Roig M, Eng JJ, Macintyre DL, Road JD, Reid WD. Postural Control Is Impaired in People with COPD: an Observational Study. Physiother Can. 2011;63(4):423–431. doi:10.3138/ptc.2010-32
  • Beauchamp MK, Sibley KM, Lakhani B, et al. Impairments in systems underlying control of balance in COPD. Chest. 2012;141(6):1496–1503. doi:10.1378/chest.11-1708
  • Ozalevli S, Ilgin D, Narin S, Akkoclu A. Association between disease-related factors and balance and falls among the elderly with COPD: a cross-sectional study. Aging Clin Exp Res. 2011;23(5–6):372–377 doi:10.1007/BF03325235.
  • Hakamy A, Bolton CE, Gibson JE, McKeever TM. Risk of fall in patients with COPD. Thorax. 2018;73(11):1079–1080. doi:10.1136/thoraxjnl-2017-211008
  • Oliveira CC, Annoni R, Lee AL, McGinley J, Irving LB, Denehy L. Falls prevalence and risk factors in people with chronic obstructive pulmonary disease: a systematic review. Respir Med. 2021;176:106284. doi:10.1016/j.rmed.2020.106284
  • Voica A, Oancea C, Tudorache E, et al. Chronic obstructive pulmonary disease phenotypes and balance impairment. COPD. 2016:919. doi:10.2147/COPD.S101128
  • Oliveira CC, Lee AL, McGinley J, et al. Balance and Falls in Acute Exacerbation of Chronic Obstructive Pulmonary Disease: a Prospective Study. COPD. 2017;14(5):518–525. doi:10.1080/15412555.2017.1342232
  • Porto EF, Castro AA, Schmidt VG, et al. Postural control in chronic obstructive pulmonary disease: a systematic review. Int J Chron Obstruct Pulmon Dis. 2015;10:1233–1239. doi:10.2147/COPD.S63955
  • Loughran KJ, Atkinson G, Beauchamp MK, et al. Balance impairment in individuals with COPD: a systematic review with meta-analysis. Thorax. 2020;75(7):539–546. doi:10.1136/thoraxjnl-2019-213608
  • Crisan AF, Oancea C, Timar B, Fira-Mladinescu O, Tudorache V. Falls, an underestimated risk in COPD. Eur Respir J. 2015;46(suppl):59. doi:10.1183/13993003.congress-2015.PA3070
  • Jácome C, Cruz J, Gabriel R, Figueiredo D, Marques A. Functional balance in older adults with chronic obstructive pulmonary disease. J Aging Phys Act. 2014;22(3):357–363. doi:10.1123/japa.2012-0319
  • Schons P, da Silva ES, Coertjens M, et al. The relationship between height of vertical jumps, functionality and fall episodes in patients with chronic obstructive pulmonary disease: a case-control study. Exp Gerontol. 2021;152:111457. doi:10.1016/j.exger.2021.111457
  • Eymir M, Yakut H, Özalevli S, Alpaydın AÖ. Static and dynamic balance impairment and relationship with disease-related factors in patients with chronic obstructive pulmonary disease: a cross-sectional study. Wien Klin Wochenschr. 2021;133(21–22):1186–1194. doi:10.1007/s00508-021-01918-8
  • Almeida CNS. Static balance in older adults with chronic obstructive pulmonary disease undergoing pulmonary rehabilitation. Geriatrics Gerontol Aging. 2020;14(2):98–107. doi:10.5327/Z2447-212320201900091
  • Park JK, Deutz NEP, Cruthirds CL, et al. Risk Factors for Postural and Functional Balance Impairment in Patients with Chronic Obstructive Pulmonary Disease. JCM. 2020;9(2):609. doi:10.3390/jcm9020609
  • Smith MD, Chang AT, Seale HE, Walsh JR, Hodges PW. Balance is impaired in people with chronic obstructive pulmonary disease. Gait Posture. 2010;31(4):456–460. doi:10.1016/j.gaitpost.2010.01.022
  • Janssens L, Brumagne S, McConnell AK, et al. Proprioceptive changes impair balance control in individuals with chronic obstructive pulmonary disease. PLoS One. 2013;8(3):e57949. doi:10.1371/journal.pone.0057949
  • Molouki A, Roostayi MM, Abedi M, Fakharian A, Akbarzadeh Baghban A. Postural Balance Evaluation in Patients with Chronic Obstructive Pulmonary Disease. Tanaffos. 2020;19(4):392–400.
  • Gloeckl R, Schneeberger T, Leitl D, et al. Whole-body vibration training versus conventional balance training in patients with severe COPD—a randomized, controlled trial. Respir Res. 2021;22(1):138. doi:10.1186/s12931-021-01688-x
  • Van Hove O, Cebolla AM, Andrianopoulos V, et al. The influence of cognitive load on static balance in chronic obstructive pulmonary disease patients. Clin Respir J. 2021;15(3):351–357. doi:10.1111/crj.13307
  • Horak FB, Nutt JG, Nashner LM. Postural inflexibility in parkinsonian subjects. J Neurol Sci. 1992;111(1):46–58. doi:10.1016/0022-510x(92)90111-w
  • Yamamoto T, Suzuki Y, Nomura K, et al. A Classification of Postural Sway Patterns During Upright Stance in Healthy Adults and Patients with Parkinson’s Disease. J Adv Comput Intelligence Intelligent Informatics. 2011;15(8):997–1010. doi:10.20965/jaciii.2011.p0997
  • Porto EF, Pradella CO, Rocco CM, et al. Comparative Postural Control in COPD Patients and Healthy Individuals During Dynamic and Static Activities. J Cardiopulm Rehabil Prev. 2017;37(2):139–145. doi:10.1097/HCR.0000000000000246
  • Smith MD, Chang AT, Hodges PW. Balance recovery is compromised and trunk muscle activity is increased in chronic obstructive pulmonary disease. Gait Posture. 2016;43:101–107. doi:10.1016/j.gaitpost.2015.09.004
  • Araújo de Castro L, Morita AA, Sepúlveda-Loyola W, et al. Are there differences in muscular activation to maintain balance between individuals with chronic obstructive pulmonary disease and controls? Respir Med. 2020;173:106016. doi:10.1016/j.rmed.2020.106016
  • Terui Y, Iwakura M, Suto E, et al. New evaluation of trunk movement and balance during walking in COPD patients by a triaxial accelerometer. COPD. 2018;13:3957–3962. doi:10.2147/COPD.S184212
  • Janssens L, Brumagne S, McConnell AK, et al. Impaired Postural Control Reduces Sit-to-Stand-to-Sit Performance in Individuals with Chronic Obstructive Pulmonary Disease. PLoS One. 2014;9(2):e88247. doi:10.1371/journal.pone.0088247
  • Karpman C, Benzo R. Gait speed as a measure of functional status in COPD patients. COPD. 2014;9(1):1315–1320. doi:10.2147/COPD.S54481
  • Newman AB, Simonsick EM, Naydeck BL, et al. Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. JAMA. 2006;295(17):2018–2026. doi:10.1001/jama.295.17.2018
  • Vestergaard S, Patel KV, Walkup MP, et al. Stopping to rest during a 400-meter walk and incident mobility disability in older persons with functional limitations. J Am Geriatr Soc. 2009;57(2):260–265. doi:10.1111/j.1532-5415.2008.02097.x
  • Studenski S, Perera S, Patel K, et al. Gait speed and survival in older adults. JAMA. 2011;305(1):50–58. doi:10.1001/jama.2010.1923
  • Studenski S, Perera S, Wallace D, et al. Physical performance measures in the clinical setting. J Am Geriatr Soc. 2003;51(3):314–322 doi:10.1046/j.1532-5415.2003.51104.x.
  • Guralnik JM, Ferrucci L, Pieper CF, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol a Biol Sci Med Sci. 2000;55(4):M221–31 doi:10.1093/gerona/55.4.m221.
  • Lahousse L, Verlinden VJ, van der Geest JN, et al. Gait patterns in COPD: the Rotterdam Study. Eur Respir J. 2015;46(1):88–95. doi:10.1183/09031936.00213214
  • Ilgin D, Ozalevli S, Kilinc O, Sevinc C, Cimrin AH, Ucan ES. Gait speed as a functional capacity indicator in patients with chronic obstructive pulmonary disease. Ann Thorac Med. 2011;6(3):141–146. doi:10.4103/1817-1737.82448
  • Iwakura M, Okura K, Shibata K, et al. Gait characteristics and their associations with clinical outcomes in patients with chronic obstructive pulmonary disease. Gait Posture. 2019;74:60–65. doi:10.1016/j.gaitpost.2019.08.012
  • Walsh JA, Barker RE, Kon SSC, et al. Gait speed and adverse outcomes following hospitalised exacerbation of COPD. Eur Respir J. 2021;58(5):2004047. doi:10.1183/13993003.04047-2020
  • Liu WY, Meijer K, Delbressine J, Willems P, Wouters E, Spruit M. Effects of Pulmonary Rehabilitation on Gait Characteristics in Patients with COPD. JCM. 2019;8(4):459. doi:10.3390/jcm8040459
  • Yentes JM, Blanke D, Rennard SI, Stergiou N. The Effect of a Short Duration, High Intensity Exercise Intervention on Gait Biomechanics in Patients With COPD: findings From a Pilot Study. Chronic Obstr Pulm Dis. 2014;1(1):133–147. doi:10.15326/jcopdf.1.1.2013.0002
  • Zago M, Sforza C, Bonardi DR, Guffanti EE, Galli M. Gait analysis in patients with chronic obstructive pulmonary disease: a systematic review. Gait Posture. 2018;61:408–415. doi:10.1016/j.gaitpost.2018.02.007
  • McCamley JD, Pisciotta EJ, Yentes JM, et al. Gait deficiencies associated with peripheral artery disease are different than chronic obstructive pulmonary disease. Gait Posture. 2017;57:258–264. doi:10.1016/j.gaitpost.2017.06.018
  • Yentes JM, Rennard SI, Schmid KK, Blanke D, Stergiou N. Patients with Chronic Obstructive Pulmonary Disease Walk with Altered Step Time and Step Width Variability as Compared with Healthy Control Subjects. Ann Am Thorac Soc. 2017;14(6):858–866. doi:10.1513/AnnalsATS.201607-547OC
  • Yentes JM, Schmid KK, Blanke D, Romberger DJ, Rennard SI, Stergiou N. Gait mechanics in patients with chronic obstructive pulmonary disease. Respir Res. 2015;16:31. doi:10.1186/s12931-015-0187-5
  • Fallahtafti F, Curtze C, Samson K, Yentes JM. Chronic obstructive pulmonary disease patients increase medio-lateral stability and limit changes in antero-posterior stability to curb energy expenditure. Gait Posture. 2020;75:142–148. doi:10.1016/j.gaitpost.2019.10.025
  • McCrum C, Vaes AW, Delbressine JM, et al. A pilot study on the feasibility and effectiveness of treadmill-based perturbations for assessing and improving walking stability in chronic obstructive pulmonary disease. Clin Biomechanics. 2022:91. doi:10.1016/j.clinbiomech.2021.105538
  • Annegarn J, Spruit MA, Savelberg HH, et al. Differences in walking pattern during 6-min walk test between patients with COPD and healthy subjects. PLoS One. 2012;7(5):e37329. doi:10.1371/journal.pone.0037329
  • Marquis N, Debigare R, Bouyer L, et al. Physiology of walking in patients with moderate to severe chronic obstructive pulmonary disease. Med Sci Sports Exerc. 2009;41(8):1540–1548. doi:10.1249/MSS.0b013e31819c717f
  • Scivoletto G, Tamburella F, Laurenza L, Foti C, Ditunno JF, Molinari M. Validity and reliability of the 10-m walk test and the 6-min walk test in spinal cord injury patients. Spinal Cord. 2011;49(6):736–740. doi:10.1038/sc.2010.180
  • ATS. ATS Statement. Am J Respir Crit Care Med. 2002;166(1):111–117. doi:10.1164/ajrccm.166.1.at1102
  • Saraiva NAO, Ferreira AS, Papathanasiou JV, Guimarães FS, Lopes AJ. Kinematic evaluation of patients with chronic obstructive pulmonary disease during the 6-min walk test. J Bodyw Mov Ther. 2021;27:134–140. doi:10.1016/j.jbmt.2021.01.005
  • Frey U, Maksym G, Suki B. Temporal complexity in clinical manifestations of lung disease. J Appl Physiol. 2011;110(6):1723–1731. doi:10.1152/japplphysiol.01297.2010
  • Liu WY, Schmid KK, Meijer K, Spruit MA, Yentes JM. Subjects With COPD Walk With Less Consistent Organization of Movement Patterns of the Lower Extremity. Respir Care. 2020;65(2):158–168. doi:10.4187/respcare.06743
  • Sanseverino MA, Pecchiari M, Bona RL, et al. Limiting Factors in Walking Performance of Subjects With COPD. Respir Care. 2018;63(3):301–310. doi:10.4187/respcare.05768
  • Heraud N, Alexandre F, Gueugnon M, et al. Impact of Chronic Obstructive Pulmonary Disease on Cognitive and Motor Performances in Dual-Task Walking. COPD. 2018;15(3):277–282. doi:10.1080/15412555.2018.1469607
  • Debigaré R, Côte CH, Hould FS, LeBlanc P, Maltais F. In vitro and in vivo contractile properties of the vastus lateralis muscle in males with COPD. Eur Respir J. 2003;21(2):273–278. doi:10.1183/09031936.03.00036503
  • Degens H, Sanchez Horneros JM, Heijdra YF, Dekhuijzen PNR, Hopman MTE. Skeletal muscle contractility is preserved in COPD patients with normal fat-free mass. Acta Physiol Scand. 2005;184(3):235–242. doi:10.1111/j.1365-201X.2005.01447.x
  • Valle MS, Casabona A, Di Fazio E, et al. Impact of chronic obstructive pulmonary disease on passive viscoelastic components of the musculoarticular system. Sci Rep. 2021;11(1):18077. doi:10.1038/s41598-021-97621-9
  • Deng M, Zhou X, Li Y, et al. Ultrasonic Elastography of the Rectus Femoris, a Potential Tool to Predict Sarcopenia in Patients With Chronic Obstructive Pulmonary Disease. Front Physiol. 2021;12:783421. doi:10.3389/fphys.2021.783421
  • Xu JH, Wu ZZ, Tao FY, et al. Ultrasound Shear Wave Elastography for Evaluation of Diaphragm Stiffness in Patients with Stable COPD: a Pilot Trial. J Ultrasound Med. 2021;40(12):2655–2663. doi:10.1002/jum.15655
  • Navarro-Cruz R, Alcazar J, Rodriguez-Lopez C, et al. The Effect of the Stretch-Shortening Cycle in the Force–Velocity Relationship and Its Association With Physical Function in Older Adults With COPD. Front Physiol. 2019;1:10 doi:10.3389/fphys.2019.00316.
  • Coratella G, Rinaldo N, Schena F. Quadriceps concentric-eccentric force and muscle architecture in COPD patients vs healthy men. Hum Mov Sci. 2018;59:88–95. doi:10.1016/j.humov.2018.03.015
  • Aliverti A, Cala SJ, Duranti R, et al. Human respiratory muscle actions and control during exercise. J Appl Physiol. 1997;83(4):1256–1269. doi:10.1152/jappl.1997.83.4.1256
  • Sanna A, Bertoli F, Misuri G, et al. Chest wall kinematics and respiratory muscle action in walking healthy humans. J Appl Physiol. 1999;87(3):938–946. doi:10.1152/jappl.1999.87.3.938
  • Sharp JT, Goldberg NB, Druz WS, Fishman HC, Danon J. Thoracoabdominal motion in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1977;115(1):47–56. doi:10.1164/arrd.1977.115.1.47
  • Dodd DS, Brancatisano T, Engel LA. Chest wall mechanics during exercise in patients with severe chronic air-flow obstruction. Am Rev Respir Dis. 1984;129(1):33–38. doi:10.1164/arrd.1984.129.1.33
  • Delgado HR, Braun SR, Skatrud JB, Reddan WG, Pegelow DF. Chest wall and abdominal motion during exercise in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1982;126(2):200–205. doi:10.1164/arrd.1982.126.2.200
  • Breslin EH, Garoutte BC. Respiratory responses to unsupported arm lifts paced during expiration. West J Nurs Res. 1995;17(1):91–100. doi:10.1177/019394599501700108
  • Castro AAM, Porto EF, Feltrim MIZ, Jardim JR. Asynchrony and hyperinflation in patients with chronic obstructive pulmonary disease during two types of upper limbs exercise. Arch Bronconeumol. 2013;49(6):241–248. doi:10.1016/j.arbres.2012.12.009
  • Celli BR, Rassulo J, Make BJ. Dyssynchronous breathing during arm but not leg exercise in patients with chronic airflow obstruction. N Engl J Med. 1986;314(23):1485–1490. doi:10.1056/NEJM198606053142305
  • Alves GS, Britto RR, Campos FC, Vilaça ABO, Moraes KS, Parreira VF. Breathing pattern and thoracoabdominal motion during exercise in chronic obstructive pulmonary disease. Braz J Med Biol Res. 2008;41(11):945–950. doi:10.1590/s0100-879x2008001100001
  • Chien J-Y, Ruan S-Y, Huang Y-CT, Yu C-J, Yang P-C. Asynchronous thoraco-abdominal motion contributes to decreased 6-minute walk test in patients with COPD. Respir Care. 2013;58(2):320–326. doi:10.4187/respcare.01522
  • O’Donnell DE. Hyperinflation, dyspnea, and exercise intolerance in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2006;3(2):180–184. doi:10.1513/pats.200508-093DO
  • Shah PL, Herth FJ, van Geffen WH, Deslee G, Slebos D-J. Lung volume reduction for emphysema. Lancet Respir Med. 2017;5(2):147–156. doi:10.1016/S2213-2600(16)30221-1
  • Iandelli I, Rosi E, Scano G. The ELITE system. Monaldi Archives for Chest Disease = Archivio Monaldi per le Malattie Del Torace. 1999;54(6):498–501.
  • Pereira MC, Porras DC, Lunardi AC, et al. Thoracoabdominal asynchrony: two methods in healthy, COPD, and interstitial lung disease patients. PLoS One. 2017;12(8):e0182417. doi:10.1371/journal.pone.0182417
  • Aliverti A. Regional chest wall volumes during exercise in chronic obstructive pulmonary disease. Thorax. 2004;59(3):210–216. doi:10.1136/thorax.2003.011494
  • Cala SJ, Kenyon CM, Ferrigno G, et al. Chest wall and lung volume estimation by optical reflectance motion analysis. J Appl Physiol. 1996;81(6):2680–2689. doi:10.1152/jappl.1996.81.6.2680
  • Dellaca RL, Aliverti A, Pelosi P, et al. Estimation of end-expiratory lung volume variations by optoelectronic plethysmography. Crit Care Med. 2001;29(9):1807–1811. doi:10.1097/00003246-200109000-00026
  • Duranti R, Filippelli M, Bianchi R, et al. Inspiratory capacity and decrease in lung hyperinflation with albuterol in COPD. Chest. 2002;122(6):2009–2014. doi:10.1378/chest.122.6.2009
  • Georgiadou O, Vogiatzis I, Stratakos G, et al. Effects of rehabilitation on chest wall volume regulation during exercise in COPD patients. Eur Respir J. 2006;29(2):284–291. doi:10.1183/09031936.00121006
  • Bianchi R, Gigliotti F, Romagnoli I, et al. Patterns of chest wall kinematics during volitional pursed-lip breathing in COPD at rest. Respir Med. 2007;101(7):1412–1418. doi:10.1016/j.rmed.2007.01.021
  • Coutinho Myrrha MA, Vieira DSR, Moraes KS, Lage SM, Parreira VF, Britto RR. Chest wall volumes during inspiratory loaded breathing in COPD patients. Respir Physiol Neurobiol. 2013;188(1):15–20. doi:10.1016/j.resp.2013.04.017
  • Massaroni C, Carraro E, Vianello A, et al. Optoelectronic Plethysmography in Clinical Practice and Research: a Review. Respiration. 2017;93(5):339–354. doi:10.1159/000462916
  • Torres A, Sarlabous L, Fiz JA, et al. Noninvasive measurement of inspiratory muscle performance by means of diaphragm muscle mechanomyographic signals in COPD patients during an incremental load respiratory test. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2493–2496. doi:10.1109/IEMBS.2010.5626618
  • Sarlabous L, Torres A, Fiz JA, Gea J, Martinez-Llorens JM, Jane R. Evaluation of the respiratory muscular function by means of diaphragmatic mechanomyographic signals in COPD patients. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3925–3928. doi:10.1109/IEMBS.2009.5333536
  • Estrada L, Torres A, Sarlabous L, et al. Estimation of bilateral asynchrony between diaphragm mechanomyographic signals in patients with chronic obstructive pulmonary disease. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3813–3816. doi:10.1109/EMBC.2014.6944454
  • Sarlabous L, Torres A, Fiz JA, et al. Evaluation of the respiratory muscles efficiency during an incremental flow respiratory test. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3820–3823. doi:10.1109/IEMBS.2011.6090775
  • Sarlabous L, Torres A, Fiz JA, Martínez-Llorens JM, Gea J, Jané R. Inspiratory muscle activation increases with COPD severity as confirmed by non-invasive mechanomyographic analysis. PLoS One. 2017;12(5):e0177730. doi:10.1371/journal.pone.0177730
  • Petrocelli LCE, Lozano-García M, Moore A, et al. Assessment of inspiratory muscle activation using surface mechanomyography in COPD patients with comorbid heart failure. Eur Respir J. 2019;54(suppl):63. doi:10.1183/13993003.congress-2019.PA3932
  • Blanco-Almazán D, Groenendaal W, Lozano-García M, et al. Combining Bioimpedance and Myographic Signals for the Assessment of COPD During Loaded Breathing. IEEE Trans Biomed Eng. 2021;68(1):298–307. doi:10.1109/TBME.2020.2998009
  • Gupta P, Wen H, Di Francesco L, Ayazi F. Detection of pathological mechano-acoustic signatures using precision accelerometer contact microphones in patients with pulmonary disorders. Sci Rep. 2021;11(1):13427. doi:10.1038/s41598-021-92666-2
  • Stuck AK, Bachmann M, Füllemann P, Josephson KR, Stuck AE. Effect of testing procedures on gait speed measurement: a systematic review. PLoS One. 2020;15(6):e0234200. doi:10.1371/journal.pone.0234200
  • Taylor D, Stretton CM, Mudge S, Garrett N. Does clinic-measured gait speed differ from gait speed measured in the community in people with stroke? Clin Rehabil. 2006;20(5):438–444. doi:10.1191/0269215506cr945oa
  • Nelson Kakulla B. 2020 Tech Trends of the 50+. AARP Res. 2020. doi:10.26419/res.00329.001
  • Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science. 2010;327(5973):1603–1607. doi:10.1126/science.1182383
  • Park YG, Lee GY, Jang J, Yun SM, Kim E, Park JU. Liquid Metal-Based Soft Electronics for Wearable Healthcare. Adv Healthcare Mater. 2021;10(17):2002280. doi:10.1002/adhm.202002280
  • Hammock ML, Chortos A, Tee BCK, Tok JBH, Bao Z. 25th Anniversary Article: the Evolution of Electronic Skin (E-Skin): a Brief History, Design Considerations, and Recent Progress. Adv Mater. 2013;25(42):5997–6038. doi:10.1002/adma.201302240
  • Markvicka EJ, Wang G, Lee YC, Laput G, Majidi C, Yao L. ElectroDermis: fully Untethered, Stretchable, and Highly-Customizable Electronic Bandages. 2019 CHI Conference on Human Factors and Computing Systems; 2019: 632.
  • Kim DH, Lu N, Ma R, et al. Epidermal Electronics. Science. 2011;333(6044):838–843. doi:10.1126/science.1206157
  • Bartlett MD, Markvicka EJ, Majidi C. Rapid fabrication of soft, multilayered electronics for wearable monitoring. Adv Funct Mater. 2016;26(46):8496–8504.
  • Fan JA, Yeo WH, Su Y, et al. Fractal design concepts for stretchable electronics. Nat Commun. 2014;5(1):3266. doi:10.1038/ncomms4266
  • Weigel M, Lu T, Bailly G, Oulasvirta A, Majidi C, Steimle J iSkin: flexible, Stretchable and Visually Customizable On-Body Touch Sensors for Mobile Computing. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. CHI ’15. Association for Computing Machinery; 2015:2991–3000. doi:10.1145/2702123.2702391
  • Lipomi DJ, Vosgueritchian M, Tee BCK, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotech. 2011;6(12):788–792. doi:10.1038/nnano.2011.184
  • Russo A, Ahn BY, Adams JJ, Duoss EB, Bernhard JT, Lewis JA. Pen-on-Paper Flexible Electronics. Adv Mater. 2011;23(30):3426–3430. doi:10.1002/adma.201101328
  • Muth JT, Vogt DM, Truby RL, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater. 2014;26(36):6307–6312. doi:10.1002/adma.201400334
  • Markvicka EJ, Bartlett MD, Huang X, Majidi C. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat Mater. 2018;17(7):618–624 doi:10.1038/s41563-018-0084-7.
  • Tutika R, Haque ABM, Bartlett MD. Self-healing liquid metal composite for reconfigurable and recyclable soft electronics. Commun Materials. 2021;2(1):1–8 doi:10.1038/s43246-021-00169-4.
  • Liu S, Shah DS, Kramer-Bottiglio R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat Mater. 2021;20(6):851–858. doi:10.1038/s41563-021-00921-8
  • Lu T, Markvicka EJ, Jin Y, Majidi C. Soft-Matter Printed Circuit Board with UV Laser Micropatterning. ACS Appl Mater Interfaces. 2017;9(26):22055–22062. doi:10.1021/acsami.7b05522
  • Ma Y, Pharr M, Wang L, et al. Soft Elastomers with Ionic Liquid-Filled Cavities as Strain Isolating Substrates for Wearable Electronics. Small. 2017;13(9):1602954. doi:10.1002/smll.201602954
  • Chen Z, Gao N, Chu Y, He Y, Wang Y. Ionic Network Based on Dynamic Ionic Liquids for Electronic Tattoo Application. ACS Appl Mater Interfaces. 2021;13(28):33557–33565. doi:10.1021/acsami.1c09278
  • Chossat JB, Tao Y, Duchaine V, Park YL Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing. 2015 IEEE International Conference on Robotics and Automation (ICRA); 2015:2568–2573. doi:10.1109/ICRA.2015.7139544
  • Sun JY, Keplinger C, Whitesides GM, Suo Z. Ionic skin. Adv Mater. 2014;26(45):7608–7614. doi:10.1002/adma.201403441
  • Macklem PT. Complexity and respiration: a matter of life and death. Physiol Basis Respir Dis. 2005;1:605–609.
  • Macklem PT. Emergent phenomena and the secrets of life. J Appl Physiol. 2008;104(6):1844–1846. doi:10.1152/japplphysiol.00942.2007
  • Lipsitz LA, Goldberger AL. Loss of Complexity and Aging - Potential Applications of Fractals and Chaos Theory to Senescence. JAMA. 1992;267(13):1806–1809. doi:10.1001/jama.267.13.1806
  • Yentes JM, Denton W, Samson K, Schmid KK, Wiens C, Rennard S. Energy efficient physiologic coupling of gait and respiration is altered in chronic obstructive pulmonary disease. Acta Physiologica. 2018:2:548 doi:10.1111/apha.13217.
  • McCamley J, Denton W, Lyden E, Yentes JM. Measuring Coupling of Rhythmical Time Series Using Cross Sample Entropy and Cross Recurrence Quantification Analysis. Comput Math Methods Med. 2017;2017:7960467. doi:10.1155/2017/7960467
  • Kon SSC, Canavan JL, Nolan CM, et al. The 4-metre gait speed in COPD: responsiveness and minimal clinically important difference. Eur Respir J. 2014;43(5):1298–1305. doi:10.1183/09031936.00088113
  • Spruit MA, Singh SJ, Garvey C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013;188(8):e13–64. doi:10.1164/rccm.201309-1634ST
  • Delbressine JM, Vaes AW, Goërtz YM, et al. Effects of Exercise-Based Interventions on Fall Risk and Balance in Patients With Chronic Obstructive Pulmonary Disease: a SYSTEMATIC REVIEW. J Cardiopulm Rehabil Prev. 2020;40(3):152–163. doi:10.1097/HCR.0000000000000513
  • Holland AE, Cox NS, Houchen-Wolloff L, et al. Defining Modern Pulmonary Rehabilitation. An Official American Thoracic Society Workshop Report. Annals ATS. 2021;18(5):e12–e29. doi:10.1513/AnnalsATS.202102-146ST
  • McClellan R, Amiri HM, Limsuwat C, Nugent KM. Pulmonary Rehabilitation Increases Gait Speed in Patients With Chronic Lung Diseases. Health Serv Res Manag Epidemiol. 2014;1:2333392814533659. doi:10.1177/2333392814533659
  • Wouters EF, Posthuma R, Koopman M, et al. An update on pulmonary rehabilitation techniques for patients with chronic obstructive pulmonary disease. Expert Rev Respir Med. 2020;14(2):149–161. doi:10.1080/17476348.2020.1700796
  • Willeput R, Vachaudez JP, Lenders D, Nys A, Knoops T, Sergysels R. Thoracoabdominal motion during chest physiotherapy in patients affected by chronic obstructive lung disease. Respiration. 1983;44(3):204–214. doi:10.1159/000194550
  • Fernandes M, Cukier A, Feltrim MI. Efficacy of diaphragmatic breathing in patients with chronic obstructive pulmonary disease. Chron Respir Dis. 2011;8(4):237–244. doi:10.1177/1479972311424296
  • Yamaguti WP, Claudino RC, Neto AP, et al. Diaphragmatic breathing training program improves abdominal motion during natural breathing in patients with chronic obstructive pulmonary disease: a randomized controlled trial. Arch Phys Med Rehabil. 2012;93(4):571–577. doi:10.1016/j.apmr.2011.11.026
  • Cancelliero-Gaiad KM, Ike D, Pantoni CBF, Borghi-Silva A, Costa D. Respiratory pattern of diaphragmatic breathing and pilates breathing in COPD subjects. Braz J Phys Ther. 2014;18(4):291–299. doi:10.1590/bjpt-rbf.2014.0042
  • McNamara RJ, Epsley C, Coren E, McKeough ZJ. Singing for adults with chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2017;2017(12):CD012296. doi:10.1002/14651858.CD012296.pub2
  • Kaasgaard M, Rasmussen DB, Andreasson KH, et al. Use of Singing for Lung Health as an alternative training modality within pulmonary rehabilitation for COPD: a randomised controlled trial. Eur Respir J. 2022;59(5):51. doi:10.1183/13993003.01142-2021
  • Lewis A, Philip KEJ, Lound A, Cave P, Russell J, Hopkinson NS. The physiology of singing and implications for ‘Singing for Lung Health’ as a therapy for individuals with chronic obstructive pulmonary disease. BMJ Open Respir Res. 2021;8(1):e000996. doi:10.1136/bmjresp-2021-000996
  • MacBean V, Reilly CC, Rafferty GF, Kolyra E. Dance as a rehabilitative strategy for patients with COPD. Eur Respir J. 2017;50(suppl 61):2154. doi:10.1183/1393003.congress-2017.PA3715
  • Harrison S, Bierski K, Burn N, et al. Dance for people with chronic breathlessness: a transdisciplinary approach to intervention development. BMJ Open Respir Res. 2020;7(1):e000696. doi:10.1136/bmjresp-2020-000696
  • Fulambarker A, Farooki B, Kheir F, Copur AS, Srinivasan L, Schultz S. Effect of yoga in chronic obstructive pulmonary disease. Am J Ther. 2012;19(2):96–100. doi:10.1097/MJT.0b013e3181f2ab86
  • Kaminsky DA, Guntupalli KK, Lippmann J, et al. Effect of Yoga Breathing (Pranayama) on Exercise Tolerance in Patients with Chronic Obstructive Pulmonary Disease: a Randomized, Controlled Trial. J Altern Complement Med. 2017;23(9):696–704. doi:10.1089/acm.2017.0102
  • Gao P, Tang F, Liu W, He K, Mo Y. Effect of liuzijue qigong on patients with stable chronic obstructive pulmonary disease. Medicine. 2021;100(41):e27344. doi:10.1097/MD.0000000000027344
  • Xu S, Zhang D, He Q, et al. Efficacy of Liuzijue Qigong in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Complement Ther Med. 2022;65:102809. doi:10.1016/j.ctim.2022.102809
  • Ngai SPC, Jones AYM, Tam WWS. Tai Chi for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst Rev. 2016;4(6):CD009953. doi:10.1002/14651858.CD009953.pub2
  • Gilliam EA, Cheung T, Kraemer K, et al. The impact of Tai Chi and mind-body breathing in COPD: insights from a qualitative sub-study of a randomized controlled trial. PLoS One. 2021;16(4):e0249263. doi:10.1371/journal.pone.0249263
  • Kantatong T, Panpanich R, Deesomchok A, Sungkarat S, Siviroj P. Effects of the tai chi qigong programme on functional capacity, and lung function in chronic obstructive pulmonary disease patients: a ramdomised controlled trial. J Tradit Complement Med. 2020;10(4):354–359. doi:10.1016/j.jtcme.2019.03.008
  • Ehsani H, Mohler MJ, Golden T, Toosizadeh N. Upper-extremity function prospectively predicts adverse discharge and all-cause COPD readmissions: a pilot study. COPD. 2018;14:39–49. doi:10.2147/COPD.S182802
  • Rahman MJ, Nemati E, Rahman M, Vatanparvar K, Nathan V, Kuang J. Toward Early Severity Assessment of Obstructive Lung Disease Using Multi-Modal Wearable Sensor Data Fusion During Walking. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:5935–5938. doi:10.1109/EMBC44109.2020.9176559
  • Gerus P, Rao G, Berton E. Subject-Specific Tendon-Aponeurosis Definition in Hill- Type Model Predicts Higher Muscle Forces in Dynamic Tasks. PLoS One. 2012;7:e44406. doi:10.1371/journal.pone.0044406
  • Davis LC, Baumer TG, Bey MJ. Clinical utilization of shear wave elastography in the musculoskeletal system. Ultrasonography. 2018;38(1):2–12. doi:10.14366/usg.18039
  • Boffino CC, Pereira ACAC, Coelho DB, et al. Age and Disease have a Distinct Influence on Postural Balance of Patients with COPD. COPD. 2019;16(3–4):246–253. doi:10.1080/15412555.2019.1634683
  • de Castro LA, Felcar JM, de Carvalho DR, et al. Effects of land- and water-based exercise programmes on postural balance in individuals with COPD: additional results from a randomised clinical trial. Physiotherapy. 2020;107:58–65. doi:10.1016/j.physio.2019.08.001
  • Chauvin S, Kirkwood R, Brooks D, Goldstein RS, Beauchamp M. Which Balance Subcomponents Distinguish Between Fallers and Non-Fallers in People with COPD? COPD. 2020;15:1557–1564. doi:10.2147/COPD.S253561
  • Karpman C, DePew ZS, LeBrasseur NK, Novotny PJ, Benzo RP. Determinants of Gait Speed in COPD. Chest. 2014;146(1):104–110. doi:10.1378/chest.13-2017
  • Casabona A, Valle MS, Laudani L, et al. Is the Power Spectrum of Electromyography Signal a Feasible Tool to Estimate Muscle Fiber Composition in Patients with COPD? JCM. 2021;10(17):3815. doi:10.3390/jcm10173815
  • de Sá RB, Pessoa MF, Cavalcanti AGL, Campos SL, Amorim C. Immediate effects of respiratory muscle stretching on chest wall kinematics and electromyography in COPD patients. Respir Physiol Neurobiol. 2017;242:1–7. doi:10.1016/j.resp.2017.03.002
  • Bhatt SP, Bodduluri S, Newell JD, et al. CT-derived Biomechanical Metrics Improve Agreement Between Spirometry and Emphysema. Acad Radiol. 2016;23(10):1255–1263. doi:10.1016/j.acra.2016.02.002
  • Binazzi B, Lanini B, Gigliotti F, Scano G. Breathing Pattern and Chest Wall Kinematics during Phonation in Chronic Obstructive Pulmonary Disease Patients. Respiration. 2013;86(6):462–471. doi:10.1159/000346027
  • Bodduluri S, Bhatt SP, Hoffman EA, et al. Biomechanical CT metrics are associated with patient outcomes in COPD. Thorax. 2017;72(5):409–414. doi:10.1136/thoraxjnl-2016-209544
  • Capeletti AM. Can a physical activity similar to activities of daily living cause dynamic hyperinflation and change the thoracoabdominal configuration in patients with chronic obstructive pulmonary disease? COPD. 2019;14:1281–1287. doi:10.2147/COPD.S196223
  • Chynkiamis N, Lane ND, Megaritis D, et al. Effect of portable noninvasive ventilation on thoracoabdominal volumes in recovery from intermittent exercise in patients with COPD. J Appl Physiol. 2021;131(1):401–413. doi:10.1152/japplphysiol.00081.2021
  • Gagliardi E, Innocenti Bruni G, Presi I, Gigliotti F, Scano G. Thoraco-abdominal motion/displacement does not affect dyspnea following exercise training in COPD patients. Respir Physiol Neurobiol. 2014;190:124–130. doi:10.1016/j.resp.2013.10.005
  • Kruapanich C, Tantisuwat A, Thaveeratitham P, et al. The effect of unsupported arm elevations on regional chest wall volumes and thoracoabdominal asynchrony in patients with chronic obstructive pulmonary disease. Physiother Theory Pract. 2021:1–13. doi:10.1080/09593985.2021.1882018
  • Lee CT, Chien JY, Hsu MJ, Wu HD, Wang LY. Inspiratory muscle activation during inspiratory muscle training in patients with COPD. Respir Med. 2021;190:106676. doi:10.1016/j.rmed.2021.106676
  • Mendes LP, Moraes KS, Hoffman M, et al. Effects of Diaphragmatic Breathing With and Without Pursed-Lips Breathing in Subjects With COPD. Respir Care. 2019;64(2):136–144. doi:10.4187/respcare.06319
  • Priori R, Aliverti A, Albuquerque AL, Quaranta M, Albert P, Calverley PMA. The effect of posture on asynchronous chest wall movement in COPD. J Appl Physiol. 2013;114(8):1066–1075. doi:10.1152/japplphysiol.00414.2012
  • Romagnoli I, Gigliotti F, Lanini B, et al. Chest wall kinematics and breathlessness during unsupported arm exercise in COPD patients. Respir Physiol Neurobiol. 2011;178(2):242–249. doi:10.1016/j.resp.2011.06.014