283
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Revealing lncRNA Biomarkers Related to Chronic Obstructive Pulmonary Disease Based on Bioinformatics

&
Pages 2487-2515 | Received 30 Dec 2021, Accepted 09 Sep 2022, Published online: 04 Oct 2022

References

  • Raherison C, Girodet PO. Epidemiology of COPD. Eur respir rev. 2009;18:213–221. doi:10.1183/09059180.00003609
  • Zhang J, Xu H, Qiao D, et al. A polygenic risk score and age of diagnosis of chronic obstructive pulmonary disease. Eur Respir J. 2022:2101954. doi:10.1183/13993003.01954-2021
  • Singanayagam A, Footitt J, Marczynski M, et al. Airway mucins promote immunopathology in virus-exacerbated chronic obstructive pulmonary disease. J Clin Invest. 2022;132(8). doi:10.1172/jci120901
  • Vij N, Chandramani-Shivalingappa P, Van Westphal C, Hole R, Bodas M. Cigarette smoke-induced autophagy impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis. Am J Physiol Cell Physiol. 2018;314:C73–c87. doi:10.1152/ajpcell.00110.2016
  • Jeong I, Lim JH, Oh DK, Kim WJ, Oh YM. Gene expression profile of human lung in a relatively early stage of COPD with emphysema. Int J Chron Obstruct Pulmon Dis. 2018;13:2643–2655. doi:10.2147/copd.s166812
  • Zhong S, Yang L, Liu N, et al. Identification and validation of aging-related genes in COPD based on bioinformatics analysis. Aging. 2022;14(10):4336–4356. doi:10.18632/aging.204064
  • Tasena H, Faiz A, Timens W, et al. microRNA-mRNA regulatory networks underlying chronic mucus hypersecretion in COPD. Eur Respir J. 2018;52:1701556. doi:10.1183/13993003.01556-2017
  • Kim RY, Sunkara KP, Bracke KR, et al. A microRNA-21-mediated SATB1/S100A9/NF-κB axis promotes chronic obstructive pulmonary disease pathogenesis. Sci Transl Med. 2021;13:eaav7223. doi:10.1126/scitranslmed.aav7223
  • Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15:7–21. doi:10.1038/nrg3606
  • Devadoss D, Daly G, Manevski M, et al. A long noncoding RNA antisense to ICAM-1 is involved in allergic asthma associated hyperreactive response of airway epithelial cells. Mucosal Immunol. 2021;14(3):630–639. doi:10.1038/s41385-020-00352-9
  • Tang W, Shen Z, Guo J, Sun S. Screening of long non-coding RNA and TUG1 inhibits proliferation with TGF-β induction in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:2951–2964. doi:10.2147/copd.s109570
  • Li N, Liu Y, Cai J. LncRNA MIR155HG regulates M1/M2 macrophage polarization in chronic obstructive pulmonary disease. Biomed Pharmacother. 2019;117:109015. doi:10.1016/j.biopha.2019.109015
  • Zheng M, Hong W, Gao M, et al. Long noncoding RNA COPDA1 promotes airway smooth muscle cell proliferation in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2019;61(5):584–596. doi:10.1165/rcmb.2018-0269OC
  • Yi E, Zhang J, Zheng M, et al. Long noncoding RNA IL6-AS1 is highly expressed in chronic obstructive pulmonary disease and is associated with interleukin 6 by targeting miR-149-5p and early B-cell factor 1. Clin Transl Med. 2021;11:e479. doi:10.1002/ctm2.479
  • Hao W, Lin F, Shi H, Guan Z, Jiang Y. Long non-coding RNA OIP5-AS1 regulates smoke-related chronic obstructive pulmonary disease via targeting micro RNA −410-3p/IL-13. Bioengineered. 2021;12:11664–11676. doi:10.1080/21655979.2021.2000199
  • Zhang L, Chen J, Yang H, et al. Multiple microarray analyses identify key genes associated with the development of non-small cell lung cancer from chronic obstructive pulmonary disease. J Cancer. 2021;12(4):996–1010. doi:10.7150/jca.51264
  • Sun S, Shen Y, Wang J, et al. Identification and validation of autophagy-related genes in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2021;16:67–78. doi:10.2147/copd.s288428
  • Rennard SI, Dale DC, Donohue JF, et al. CXCR2 antagonist MK-7123. A Phase 2 proof-of-concept trial for chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191(9):1001–1011. doi:10.1164/rccm.201405-0992OC
  • Wada JT, Borges-Santos E, Porras D, et al. Effects of aerobic training combined with respiratory muscle stretching on the functional exercise capacity and thoracoabdominal kinematics in patients with COPD: a randomized and controlled trial. Int J Chron Obstruct Pulmon Dis. 2016;11:2691–2700. doi:10.2147/copd.s114548
  • Mizuno S, Ishizaki T, Kadowaki M, et al. p53 signaling pathway polymorphisms associated with emphysematous changes in patients with COPD. Chest. 2017;152(1):58–69. doi:10.1016/j.chest.2017.03.012
  • Strulovici-Barel Y, Staudt MR, Krause A, et al. Persistence of circulating endothelial microparticles in COPD despite smoking cessation. Thorax. 2016;71(12):1137–1144. doi:10.1136/thoraxjnl-2015-208274
  • Wells JM, O’Reilly PJ, Szul T, et al. An aberrant leukotriene A 4 hydrolase–proline-glycine-proline pathway in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;190:51–61. doi:10.1164/rccm.201401-0145OC
  • Schwarz EI, Latshang TD, Furian M, et al. Blood pressure response to exposure to moderate altitude in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2019;14:659–666. doi:10.2147/copd.s194426
  • Sferrazza Papa GF, Battaglia S, Solidoro P. Novelties in COPD prognosis: evolution of survival indexes. Minerva Med. 2015;106:9–16.
  • Sant’anna T, Hernandes NA, Pitta F. Pulmonary rehabilitation and COPD: is nonlinear exercise better? Expert Rev Respir Med. 2013;7:323–325. doi:10.1586/17476348.2013.814395
  • Okura K, Iwakura M, Kawagoshi A, et al. Objective physical activity level is associated with rectus femoris muscle echo-intensity in patients with chronic obstructive pulmonary disease. Clin Respir J. 2022;16(8):572–580. doi:10.1111/crj.13528
  • Zhou AY, Zhao -Y-Y, Zhou Z-J, et al. Microarray analysis of long non-coding RNAs in lung tissues of patients with COPD and HOXA-AS2 promotes HPMECs proliferation via Notch1. Int J Chron Obstruct Pulmon Dis. 2020;15:2449–2460. doi:10.2147/copd.s259601
  • Tamang S, Acharya V, Roy D, et al. SNHG12: an LncRNA as a potential therapeutic target and biomarker for human cancer. Front Oncol. 2019;9:901. doi:10.3389/fonc.2019.00901
  • Lu C, Wei Y, Wang X, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19(1):28. doi:10.1186/s12943-020-1137-5
  • Chen PP, Zhang ZS, Wu JC, Zheng JF, Lin F. LncRNA SNHG12 promotes proliferation and epithelial mesenchymal transition in hepatocellular carcinoma through targeting HEG1 via miR-516a-5p. Cell Signal. 2021;84:109992. doi:10.1016/j.cellsig.2021.109992
  • Qi X, Zhang D-H, Wu N, et al. ceRNA in cancer: possible functions and clinical implications. J Med Genet. 2015;52(10):710–718. doi:10.1136/jmedgenet-2015-103334
  • Chen P, Jiang P, Chen J, Yang Y, Guo X. XIST promotes apoptosis and the inflammatory response in CSE-stimulated cells via the miR-200c-3p/EGR3 axis. BMC Pulm Med. 2021;21:215. doi:10.1186/s12890-021-01582-8