136
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Serum Derivatives of Reactive Oxygen Metabolites are Associated with Severity of Chronic Obstructive Pulmonary Disease and Affected by a p53 Gene Polymorphism

, , , , , , , , & show all
Pages 1589-1600 | Published online: 13 Jul 2022

References

  • Pryor WA. Cigarette smoke radicals and the role of free radicals in chemical carcinogenicity. Environ Health Persp. 1997;105(Suppl 4):875–882. doi:10.1289/ehp.97105s4875
  • Gwinn MR, Vallyathan V. Respiratory burst: role in signal transduction in alveolar macrophages. J Toxicol Environ Heal Part B. 2007;9(1):27–39. doi:10.1080/15287390500196081
  • Almkvist J, Dahlgren C, Leffler H, Karlsson A. Activation of the neutrophil nicotinamide adenine dinucleotide phosphate oxidase by galectin-1. J Immunol. 2002;168(8):4034–4041. doi:10.4049/jimmunol.168.8.4034
  • Roos WP, Kaina B. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett. 2013;332(2):237–248. doi:10.1016/j.canlet.2012.01.007
  • Mizuno S, Bogaard HJ, Gomez-Arroyo J, et al. MicroRNA-199a-5p Is associated with hypoxia-inducible factor-1α expression in lungs from patients with COPD. Chest. 2012;142(3):663–672. doi:10.1378/chest.11-2746
  • Siganaki M, Koutsopoulos AV, Neofytou E, et al. Deregulation of apoptosis mediators’ p53 and bcl2 in lung tissue of COPD patients. Respir Res. 2010;11(1):46. doi:10.1186/1465-9921-11-46
  • Morissette MC, Vachon-Beaudoin G, Parent J, Chakir J, Milot J. Increased p53 Level, Bax/Bcl-x L Ratio, and TRAIL receptor expression in human emphysema. Am J Resp Crit Care. 2008;178(3):240–247. doi:10.1164/rccm.200710-1486oc
  • Lee YL, Chen W, Tsai WK, et al. Polymorphisms of p53 and p21 genes in chronic obstructive pulmonary disease. J Lab Clin Med. 2006;147(5):228–233. doi:10.1016/j.lab.2005.12.008
  • Mizuno S, Bogaard HJ, Kraskauskas D, et al. p53 Gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am J Physiol-Lung C. 2011;300(5):L753–L761. doi:10.1152/ajplung.00286.2010
  • Walker KK, Levine AJ. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc National Acad Sci. 1996;93(26):15335–15340. doi:10.1073/pnas.93.26.15335
  • Sakamuro D, Sabbatini P, White E, Prendergast GC. The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene. 1997;15(8):887–898. doi:10.1038/sj.onc.1201263
  • Birch J, Barnes PJ, Passos JF. Mitochondria, telomeres and cell senescence: implications for lung ageing and disease. Pharmacol Therapeut. 2018;183:34–49. doi:10.1016/j.pharmthera.2017.10.005
  • Taraseviciene-Stewart L, Voelkel NF. Molecular pathogenesis of emphysema. J Clin Invest. 2008;118(2):394–402. doi:10.1172/jci31811
  • Walter MF, Jacob RF, Jeffers B, et al. Serum levels of thiobarbituric acid reactive substances predict cardiovascular events in patients with stable coronary artery disease A longitudinal analysis of the PREVENT study. J Am Coll Cardiol. 2004;44(10):1996–2002. doi:10.1016/j.jacc.2004.08.029
  • El-Bassiouni EA, Helmy MH, El-Zoghby SM, Kamel EN, Hosny RM. Relationship between level of circulating modified LDL and the extent of coronary artery disease in type 2 diabetic patients. Brit J Biomed Sci. 2016;64(3):109–116. doi:10.1080/09674845.2007.11732768
  • Wu LL, Chiou CC, Chang PY, Wu JT. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004;339(1–2):1–9. doi:10.1016/j.cccn.2003.09.010
  • Faraci FM, Didion SP. Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol. 2004;24(8):1367–1373. doi:10.1161/01.atv.0000133604.20182.cf
  • Pyne-Geithman GJ, Caudell DN, Prakash P, Clark JF. Glutathione peroxidase and subarachnoid hemorrhage: implications for the role of oxidative stress in cerebral vasospasm. Neurol Res. 2013;31(2):195–199. doi:10.1179/174313209x393906
  • Pasquini A, Luchetti E, Marchetti V, Cardini G, Iorio EL. Analytical performances of d-ROMs test and BAP test in canine plasma. Definition of the normal range in healthy Labrador dogs. Vet Res Commun. 2008;32(2):137–143. doi:10.1007/s11259-007-9014-x
  • Barnes PJ. Oxidative stress-based therapeutics in COPD. Redox Biol. 2020;33:101544. doi:10.1016/j.redox.2020.101544
  • Taniguchi A, Tsuge M, Miyahara N, Tsukahara H. Reactive oxygen species and antioxidative defense in chronic obstructive pulmonary disease. Antioxidants. 2021;10(10):1537. doi:10.3390/antiox10101537
  • Markoulis N, Gourgoulianis KI, Moulas A, Gerogianni E, Molyvdas AP. Reactive oxygen metabolites as an index of chronic obstructive pulmonary disease severity. Panminerva Med. 2006;48(4):209–213.
  • Yasuo M, Droma Y, Kitaguchi Y, et al. The relationship between acrolein and oxidative stress in COPD: in systemic plasma and in local lung tissue. Int J Chronic Obstr. 2019;14:1527–1537. doi:10.2147/copd.s208633
  • Kato R, Mizuno S, Kadowaki M, et al. Sirt1 expression is associated with CD31 expression in blood cells from patients with chronic obstructive pulmonary disease. Respir Res. 2016;17(1):139. doi:10.1186/s12931-016-0452-2
  • Mizuno S, Ishizaki T, Kadowaki M, et al. p53 signaling pathway polymorphisms associated with emphysematous changes in COPD patients. Chest. 2017;152(1):58–69. doi:10.1016/j.chest.2017.03.012
  • Agusti A, Vogelmeier C, Papi A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: 2021 report. Available from: https://goldcopd.org/2022-gold-reports-2/. Accessed November 22, 2021.
  • Nojiri M, Mizuno S, Nishiki K, et al. ADRB2 gene polymorphism and emphysema heterogeneity can modulate bronchodilator response in patients with emphysema. Pulm Pharmacol Ther. 2018;48:80–87. doi:10.1016/j.pupt.2017.09.004
  • Nishiki K, Nojiri M, Kato R, et al. Serum Creatinine/Cystatin C ratio associated with cross-sectional area of erector spinae muscles and pulmonary function in patients with chronic obstructive pulmonary disease. Int J Chronic Obstr. 2021;16:3513–3524. doi:10.2147/copd.s339243
  • Tanimura K, Sato S, Fuseya Y, et al. Quantitative assessment of erector spinae muscles in patients with chronic obstructive pulmonary disease. novel chest computed tomography–derived index for prognosis. Ann Am Thorac Soc. 2016;13(3):334–341. doi:10.1513/annalsats.201507-446oc
  • Hirai K, Tanaka A, Homma T, et al. Serum creatinine/cystatin C ratio as a surrogate marker for sarcopenia in patients with chronic obstructive pulmonary disease. Clin Nutr. 2021;40(3):1274–1280. doi:10.1016/j.clnu.2020.08.010
  • Fischer BM, Voynow JA, Ghio AJ. COPD: balancing oxidants and antioxidants. Int J Chronic Obstr. 2015;10:261–276. doi:10.2147/copd.s42414
  • Antwerpen VLV, Theron AJ, Richards GA, et al. Vitamin E, pulmonary functions, and phagocyte-mediated oxidative stress in smokers and nonsmokers. Free Radical Bio Med. 1995;18(5):935–941. doi:10.1016/0891-5849(94)00225-9
  • Halliwell B. Antioxidants in human health and disease. Annu Rev Nutr. 1996;16(1):33–50. doi:10.1146/annurev.nu.16.070196.000341
  • Kamezaki F, Yamashita K, Kubara T, et al. Derivatives of reactive oxygen metabolites correlates with high-sensitivity C-reactive protein. J Atheroscler Thromb. 2008;15(4):206–212. doi:10.5551/jat.e538
  • Hirose H, Kawabe H, Komiya N, Saito I. Relations between Serum Reactive Oxygen Metabolites (ROMs) and various inflammatory and metabolic parameters in a Japanese population. J Atheroscler Thromb. 2009;16(2):77–82. doi:10.5551/jat.e265
  • Bajpai J, Prakash V, Kant S, et al. Study of oxidative stress biomarkers in chronic obstructive pulmonary disease and their correlation with disease severity in north Indian population cohort. Lung India Official Organ Indian Chest Soc. 2017;34(4):324–329. doi:10.4103/lungindia.lungindia_205_16
  • Folchini F, Nonato N, Feofiloff E, D’Almeida V, Nascimento O, Jardim J. Association of oxidative stress markers and C-reactive protein with multidimensional indexes in COPD. Chron Resp Dis. 2011;8(2):101–108. doi:10.1177/1479972310391284
  • Ishizaka Y, Yamakado M, Toda A, Tani M, Ishizaka N. Relationship between coffee consumption, oxidant status, and antioxidant potential in the Japanese general population. Clin Chem Laboratory Medicine Cclm. 2013;51(10):1951–1959. doi:10.1515/cclm-2013-0146
  • Waseem SMA, Mobarak MH, Islam N, Ahmad Z. Comparative study of pulmonary functions and oxidative stress in smokers and non-smokers. Indian J Physiology Pharmacol. 2012;56(4):345–352.
  • Aydemir Y, Aydemir Ö, Şengül A, et al. Comparison of oxidant/antioxidant balance in COPD and non-COPD smokers. Heart Lung. 2019;48(6):566–569. doi:10.1016/j.hrtlng.2019.07.005
  • Sepúlveda-Loyola W, De Castro LA, Matsumoto AK, et al. NOVEL antioxidant and oxidant biomarkers related to sarcopenia in COPD. Heart Lung. 2021;50(1):184–191. doi:10.1016/j.hrtlng.2020.06.001
  • Grochola LF, Zeron-Medina J, Mériaux S, Bond GL. Single-nucleotide polymorphisms in the p53 signaling pathway. Csh Perspect Biol. 2010;2(5):a001032. doi:10.1101/cshperspect.a001032
  • Shenberger JS, Dixon PS. Oxygen induces S-phase growth arrest and increases p53 and p21(WAF1/CIP1) expression in human bronchial smooth-muscle cells. Am J Resp Cell Mol. 1999;21(3):395–402. doi:10.1165/ajrcmb.21.3.3604
  • Kilk K, Meitern R, Härmson O, Soomets U, Hõrak P. Assessment of oxidative stress in serum by d-ROMs test. Free Radical Res. 2014;48(8):883–889. doi:10.3109/10715762.2014.919390
  • Komatsu F, Kagawa Y, Sakuma M, et al. Investigation of oxidative stress and dietary habits in Mongolian people, compared to Japanese people. Nutr Metabolism. 2006;3(1):21. doi:10.1186/1743-7075-3-21