173
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Complex Evaluation of Surfactant Protein A and D as Biomarkers for the Severity of COPD

ORCID Icon, , , , , , & show all
Pages 1537-1552 | Published online: 02 Jul 2022

References

  • Barnes PJ, Burney PG, Silverman EK, et al. Chronic obstructive pulmonary disease. Nat Rev Dis Primers. 2015;1(1):15076. doi:10.1038/nrdp.2015.76
  • Borg M, Thastrup T, Larsen KL, Overgaard K, Hilberg O, Løkke A. Free diving-inspired breathing techniques for COPD patients: a pilot study. Chron Respir Dis. 2021;18:14799731211038673. doi:10.1177/14799731211038673
  • Hogea SP, Tudorache E, Fildan AP, Fira-Mladinescu O, Marc M, Oancea C. Risk factors of chronic obstructive pulmonary disease exacerbations. Clin Respir J. 2020;14(3):183–197. doi:10.1111/crj.13129
  • Dima E, Kyriakoudi A, Kaponi M, et al. The lung microbiome dynamics between stability and exacerbation in chronic obstructive pulmonary disease (COPD): current perspectives. Respir Med. 2019;157:1–6. doi:10.1016/j.rmed.2019.08.012
  • Cameron SJ, Lewis KE, Huws SA, et al. Metagenomic sequencing of the chronic obstructive pulmonary disease upper bronchial tract microbiome reveals functional changes associated with disease severity. PLoS One. 2016;11(2):e0149095. doi:10.1371/journal.pone.0149095
  • Barker BL, Haldar K, Patel H, et al. Association between pathogens detected using quantitative polymerase chain reaction with airway inflammation in COPD at stable state and exacerbations. Chest. 2015;147(1):46–55. doi:10.1378/chest.14-0764
  • Mantovani A. Wandering pathways in the regulation of innate immunity and inflammation. J Autoimmun. 2017;85:1–5. doi:10.1016/j.jaut.2017.10.007
  • Tasena H, Boudewijn IM, Faiz A, et al. MiR-31-5p: a shared regulator of chronic mucus hypersecretion in asthma and chronic obstructive pulmonary disease. Allergy. 2020;75(3):703–706. doi:10.1111/all.14060
  • Barrow AD, Palarasah Y, Bugatti M, et al. OSCAR is a receptor for surfactant protein D that activates TNF-α release from human CCR2+ inflammatory monocytes. J Immunol. 2015;194:3317–3326. doi:10.4049/jimmunol.1402289
  • Jin S, Zhao G, Li Z, et al. Age-related pulmonary emphysema in mice lacking alpha/beta hydrolase domain containing 2 gene. Biochem Biophys Res Commun. 2009;380(2):419–424. doi:10.1016/j.bbrc.2009.01.098
  • Yoshida M, Whitsett JA. Alveolar macrophages and emphysema in surfactant protein-D-deficient mice. Respirology. 2006;11 Suppl(s1):S37–40. doi:10.1111/j.1440-1843.2006.00806.x
  • Winkler C, Atochina-Vasserman EN, Holz O, et al. Comprehensive characterisation of pulmonary and serum surfactant protein D in COPD. Respir Res. 2011;12(1):29. doi:10.1186/1465-9921-12-29
  • Li Y, Cho MH, Zhou X. What do polymorphisms tell us about the mechanisms of COPD? Clin Sci (Lond). 2017;131(24):2847–2863. doi:10.1042/CS20160718
  • Obeidat M, Li X, Burgess S, et al. Surfactant protein D is a causal risk factor for COPD: results of Mendelian randomisation. Eur Respir J. 2017;50:1700657.
  • Cavarra E, Bartalesi B, Lucattelli M, et al. Effects of cigarette smoke in mice with different levels of α 1 -proteinase inhibitor and sensitivity to oxidants. Am J Respir Crit Care Med. 2001;164:886–890. doi:10.1164/ajrccm.164.5.2010032
  • Huh JW, Kim SY, Lee JH, et al. Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am J Physiol Lung Cell Mol Physiol. 2011;301(3):L255–66. doi:10.1152/ajplung.00253.2010
  • Lee J-H, Lee DS, Kim E-K, et al. Simvastatin inhibits cigarette smoking-induced emphysema and pulmonary hypertension in rat lungs. Am J Respir Crit Care Med. 2005;172(8):987–993. doi:10.1164/rccm.200501-041OC
  • Mirza S, Clay RD, Koslow MA, Scanlon PD. COPD guidelines: a review of the 2018 GOLD report. Mayo Clin Proc. 2018;93(10):1488–1502. doi:10.1016/j.mayocp.2018.05.026
  • Ravi AK, Khurana S, Lemon J, et al. Increased levels of soluble interleukin-6 receptor and CCL3 in COPD sputum. Respir Res. 2014;15(1):103. doi:10.1186/s12931-014-0103-4
  • Kanai K, Koarai A, Shishikura Y, et al. Cigarette smoke augments MUC5AC production via the TLR3-EGFR pathway in airway epithelial cells. Respir Investig. 2015;53(4):137–148. doi:10.1016/j.resinv.2015.01.007
  • Imai K, Mercer BA, Schulman LL, Sonett JR, D’Armiento JM. Correlation of lung surface area to apoptosis and proliferation in human emphysema. Eur Respir J. 2005;25(2):250–258. doi:10.1183/09031936.05.00023704
  • Feghali-Bostwick CA, Gadgil AS, Otterbein LE, et al. Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(2):156–163. doi:10.1164/rccm.200701-014OC
  • Petrache I, Natarajan V, Zhen L, et al. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med. 2005;11(5):491–498. doi:10.1038/nm1238
  • Liu L, Li X, Yuan R, et al. Associations of ABHD2 genetic variations with risks for chronic obstructive pulmonary disease in a Chinese Han population. PLoS One. 2015;10(4):e0123929. doi:10.1371/journal.pone.0123929
  • Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442. doi:10.1371/journal.pmed.0030442
  • Vlachaki EM, Koutsopoulos AV, Tzanakis N, et al. Altered surfactant protein-A expression in type II pneumocytes in COPD. Chest. 2010;137(1):37–45. doi:10.1378/chest.09-1029
  • Emmanouil P, Loukides S, Kostikas K, et al. Sputum and BAL Clara cell secretory protein and surfactant protein D levels in asthma. Allergy. 2015;70(6):711–714. doi:10.1111/all.12603
  • Wang LL, Zheng SY, Ren L, et al. Levels of surfactant proteins A and D in bronchoalveolar lavage fluid of children with pneumonia and their relationships with clinical characteristics. Chinese Journal of Contemporary Pediatrics. 2016;18(5):386–390. Chinese. doi:10.7499/j.issn.1008-8830.2016.05.002
  • Koehorst-Ter Huurne K, Groothuis-Oudshoorn CG, vanderValk PD, Movig KL, van der Palen J, Brusse-Keizer M. Association between poor therapy adherence to inhaled corticosteroids and tiotropium and morbidity and mortality in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:1683–1690. doi:10.2147/COPD.S161374
  • Au LH, Chan HS. Severity of airflow limitation, co-morbidities and management of chronic obstructive pulmonary disease patients acutely admitted to hospital. Hong Kong Med J. 2013;19(6):498–503. doi:10.12809/hkmj133909
  • Ozyurek BA, Ulasli SS, Bozbas SS, Bayraktar N, Akcay S. Value of serum and induced sputum surfactant protein-D in chronic obstructive pulmonary disease. Multidiscip Respir Med. 2013;8(1):36. doi:10.1186/2049-6958-8-36
  • Akiki Z, Fakih D, Jounblat R, et al. Surfactant protein D, a clinical biomarker for chronic obstructive pulmonary disease with excellent discriminant values. Exp Ther Med. 2016;11(3):723–730. doi:10.3892/etm.2016.2986
  • Zien Alaabden A, Mohammad Y, Fahoum S. The role of serum surfactant protein D as a biomarker of exacerbation of chronic obstructive pulmonary disease. Qatar Med J. 2015;2015(2):18. doi:10.5339/qmj.2015.18
  • Tantawy AA, Adly AA, Ebeid FSE, et al. Surfactant protein D as a marker for pulmonary complications in pediatric patients with sickle cell disease: relation to lung function tests. Pediatr Pulmonol. 2019;54(5):610–619. doi:10.1002/ppul.24257
  • Ju CR, Liu W, Chen RC. Serum surfactant protein D: biomarker of chronic obstructive pulmonary disease. Dis Markers. 2012;32(5):281–287. doi:10.1155/2012/509063
  • Shakoori TA, Sin DD, Ghafoor F, Bashir S, Bokhari SN. Serum surfactant protein D during acute exacerbations of chronic obstructive pulmonary disease. Dis Markers. 2009;27(6):287–294. doi:10.1155/2009/759304