162
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Association of Renin-Angiotensin System Blockades and Mortality in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease and Acute Respiratory Failure: A Retrospective Cohort Study

ORCID Icon, , ORCID Icon, &
Pages 2001-2011 | Received 21 Apr 2022, Accepted 28 Aug 2022, Published online: 01 Sep 2022

References

  • Scala R, Heunks L. Highlights in acute respiratory failure. Eur Respir Rev Off J Eur Respir Soc. 2018;27(147):180008. doi:10.1183/16000617.0008-2018
  • Khilnani GC, Banga A, Sharma SK. Predictors of mortality of patients with acute respiratory failure secondary to chronic obstructive pulmonary disease admitted to an intensive care unit: a one year study. BMC Pulm Med. 2004;4:12. doi:10.1186/1471-2466-4-12
  • Mancini GBJ, Etminan M, Zhang B, Levesque LE, FitzGerald JM, Brophy JM. Reduction of morbidity and mortality by statins, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers in patients with chronic obstructive pulmonary disease. J Am Coll Cardiol. 2006;47(12):2554–2560. doi:10.1016/j.jacc.2006.04.039
  • Mortensen EM, Copeland LA, Pugh MJV, et al. Impact of statins and ACE inhibitors on mortality after COPD exacerbations. Respir Res. 2009;10:45. doi:10.1186/1465-9921-10-45
  • Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3:160035. doi:10.1038/sdata.2016.35
  • Zhang W, Wang Y, Wang J, Wang S. Association between red blood cell distribution width and long-term mortality in acute respiratory failure patients. Sci Rep. 2020;10(1):21185. doi:10.1038/s41598-020-78321-2
  • Vandenbroucke JP, von Elm E, Altman DG, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiol Camb Mass. 2007;18(6):805–835. doi:10.1097/EDE.0b013e3181577511
  • Fortis S, Gao Y, O’Shea AMJ, Beck B, Kaboli P, Vaughan Sarrazin M. hospital variation in non-invasive ventilation use for acute respiratory failure due to COPD exacerbation. Int J Chron Obstruct Pulmon Dis. 2021;16:3157–3166. doi:10.2147/COPD.S321053
  • Yang Q, Zheng J, Wen D, et al. Association between metformin use on admission and outcomes in intensive care unit patients with acute kidney injury and type 2 diabetes: a retrospective cohort study. J Crit Care. 2021;62:206–211. doi:10.1016/j.jcrc.2020.12.007
  • Elze MC, Gregson J, Baber U, et al. Comparison of propensity score methods and covariate adjustment: evaluation in 4 cardiovascular Studies. J Am Coll Cardiol. 2017;69(3):345–357. doi:10.1016/j.jacc.2016.10.060
  • Bidulka P, Fu EL, Leyrat C, et al. Stopping renin-angiotensin system blockers after acute kidney injury and risk of adverse outcomes: parallel population-based cohort studies in English and Swedish routine care. BMC Med. 2020;18(1):195. doi:10.1186/s12916-020-01659-x
  • Tejwani V, Fawzy A, Putcha N, et al. Emphysema progression and lung function decline among angiotensin converting enzyme inhibitors and angiotensin-receptor blockade users in the COPDGene cohort. Chest. 2021;160(4):1245–1254. doi:10.1016/j.chest.2021.05.007
  • Kim J, Lee JK, Heo EY, Chung HS, Kim DK. The association of renin-angiotensin system blockades and pneumonia requiring admission in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:2159–2166. doi:10.2147/COPD.S104097
  • Lai CC, Wang YH, Wang CY, Wang HC, Yu CJ, Chen L. Comparative effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on the risk of pneumonia and severe exacerbations in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:867–874. doi:10.2147/COPD.S158634
  • Petersen H, Sood A, Meek PM, et al. Rapid lung function decline in smokers is a risk factor for COPD and is attenuated by angiotensin-converting enzyme inhibitor use. Chest. 2014;145(4):695–703. doi:10.1378/chest.13-0799
  • Raupach T, Lüthje L, Kögler H, et al. Local and systemic effects of angiotensin receptor blockade in an emphysema mouse model. Pulm Pharmacol Ther. 2011;24(2):215–220. doi:10.1016/j.pupt.2010.12.006
  • Angiotensin-converting enzyme inhibition as an adjunct to pulmonary rehabilitation in chronic obstructive pulmonary disease - pubMed. Available fom: https://pubmed.ncbi.nlm.nih.gov/27248440/. Accessed December 14, 2021.
  • Kanazawa H, Hirata K, Yoshikawa J. Effects of captopril administration on pulmonary haemodynamics and tissue oxygenation during exercise in ACE gene subtypes in patients with COPD: a preliminary study. Thorax. 2003;58(7):629–631. doi:10.1136/thorax.58.7.629
  • Kim J, Choi SM, Lee J, et al. Effect of renin-angiotensin system blockage in patients with acute respiratory distress syndrome: a retrospective case control study. Korean J Crit Care Med. 2017;32(2):154–163. doi:10.4266/kjccm.2016.00976
  • Jeffery MM, Cummins NW, Dempsey TM, Limper AH, Shah ND, Bellolio F. Association of outpatient ACE inhibitors and angiotensin receptor blockers and outcomes of acute respiratory illness: a retrospective cohort study. BMJ Open. 2021;11(3):e044010. doi:10.1136/bmjopen-2020-044010
  • Oarhe CI, Dang V, Dang M, et al. Hyperoxia downregulates angiotensin-converting enzyme-2 in human fetal lung fibroblasts. Pediatr Res. 2015;77(5):656–662. doi:10.1038/pr.2015.27
  • Shrikrishna D, Astin R, Kemp PR, Hopkinson NS. Renin-angiotensin system blockade: a novel therapeutic approach in chronic obstructive pulmonary disease. Clin Sci Lond Engl. 2012;123(8):487–498. doi:10.1042/CS20120081
  • Kaparianos A, Argyropoulou E. Local renin-angiotensin II systems, angiotensin-converting enzyme and its homologue ACE2: their potential role in the pathogenesis of chronic obstructive pulmonary diseases, pulmonary hypertension and acute respiratory distress syndrome. Curr Med Chem. 2011;18(23):3506–3515. doi:10.2174/092986711796642562
  • Wang R, Zagariya A, Ibarra-Sunga O, et al. Angiotensin II induces apoptosis in human and rat alveolar epithelial cells. Am J Physiol. 1999;276(5):L885–889. doi:10.1152/ajplung.1999.276.5.L885
  • Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med. 2010;2(7):247–257. doi:10.1002/emmm.201000080
  • Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J. 2006;28(1):219–242. doi:10.1183/09031936.06.00053805
  • Hanif K, Bid HK, Konwar R. Reinventing the ACE inhibitors: some old and new implications of ACE inhibition. Hypertens Res off J Jpn Soc Hypertens. 2010;33(1):11–21. doi:10.1038/hr.2009.184
  • Chao J, Donham P, van Rooijen N, Wood JG, Gonzalez NC. Monocyte chemoattractant protein-1 released from alveolar macrophages mediates the systemic inflammation of acute alveolar hypoxia. Am J Respir Cell Mol Biol. 2011;45(1):53–61. doi:10.1165/rcmb.2010-0264OC
  • Raiden S, Nahmod K, Nahmod V, et al. Nonpeptide antagonists of AT1 receptor for angiotensin II delay the onset of acute respiratory distress syndrome. J Pharmacol Exp Ther. 2002;303(1):45–51. doi:10.1124/jpet.102.037382
  • He X, Han B, Mura M, et al. Angiotensin-converting enzyme inhibitor captopril prevents oleic acid-induced severe acute lung injury in rats. Shock Augusta Ga. 2007;28(1):106–111. doi:10.1097/SHK.0b013e3180310f3a
  • Gullestad L, Aukrust P, Ueland T, et al. Effect of high- versus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure. J Am Coll Cardiol. 1999;34(7):2061–2067. doi:10.1016/s0735-1097(99)00495-7
  • Alkharfy KM, Kellum JA, Matzke GR. Unintended immunomodulation: part II. Effects of pharmacological agents on cytokine activity. Shock Augusta Ga. 2000;13(5):346–360. doi:10.1097/00024382-200005000-00002
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi:10.1016/j.cell.2020.02.052
  • Lin CI, Tsai CH, Sun YL, et al. Instillation of particulate matter 2.5 induced acute lung injury and attenuated the injury recovery in ACE2 knockout mice. Int J Biol Sci. 2018;14(3):253–265. doi:10.7150/ijbs.23489
  • Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605–2610. doi:10.1161/CIRCULATIONAHA.104.510461
  • Kriszta G, Kriszta Z, Váncsa S, et al. Effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on angiotensin-converting enzyme 2 levels: a comprehensive analysis based on animal studies. Front Pharmacol. 2021;12:619524. doi:10.3389/fphar.2021.619524
  • Tan WSD, Liao W, Zhou S, Mei D, Wong WSF. Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases. Curr Opin Pharmacol. 2018;40:9–17. doi:10.1016/j.coph.2017.12.002
  • Wang L, Li Y, Qin H, Xing D, Su J, Hu Z. Crosstalk between ACE2 and PLGF regulates vascular permeability during acute lung injury. Am J Transl Res. 2016;8(2):1246–1252.
  • Khan A, Benthin C, Zeno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care Lond Engl. 2017;21(1):234. doi:10.1186/s13054-017-1823-x
  • Ye R, Liu Z. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Exp Mol Pathol. 2020;113:104350. doi:10.1016/j.yexmp.2019.104350