183
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Metabolomics Reveals Dysregulated Sphingolipid and Amino Acid Metabolism Associated with Chronic Obstructive Pulmonary Disease

, , , , , , , & ORCID Icon show all
Pages 2343-2353 | Received 30 May 2022, Accepted 09 Sep 2022, Published online: 21 Sep 2022

References

  • Garudadri S, Woodruff PG. Targeting chronic obstructive pulmonary disease phenotypes, endotypes, and biomarkers. Ann Am Thorac Soc. 2018;15(Suppl 4):S234–s238. doi:10.1513/AnnalsATS.201808-533MG
  • Burkes RM, Panos RJ, Borchers MT. How might endotyping guide chronic obstructive pulmonary disease treatment? Current understanding, knowledge gaps and future research needs. Curr Opin Pulm Med. 2021;27(2):120–124. doi:10.1097/mcp.0000000000000751
  • Labaki WW, Gu T, Murray S, et al. Serum amino acid concentrations and clinical outcomes in smokers: SPIROMICS metabolomics study. Sci Rep. 2019;9(1):11367. doi:10.1038/s41598-019-47761-w
  • Yu B, Flexeder C, McGarrah RW 3rd, et al. Metabolomics identifies novel blood biomarkers of pulmonary function and COPD in the general population. Metabolites. 2019;9(4):61. doi:10.3390/metabo9040061
  • Niessen F, Schaffner F, Furlan-Freguia C, et al. Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Nature. 2008;452(7187):654–658. doi:10.1038/nature06663
  • Oskeritzian CA, Milstien S, Spiegel S. Sphingosine-1-phosphate in allergic responses, asthma and anaphylaxis. Pharmacol Ther. 2007;115(3):390–399. doi:10.1016/j.pharmthera.2007.05.011
  • Teichgräber V, Ulrich M, Endlich N, et al. Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med. 2008;14(4):382–391. doi:10.1038/nm1748
  • Petrache I, Natarajan V, Zhen L, et al. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med. 2005;11(5):491–498. doi:10.1038/nm1238
  • Chakinala RC, Khatri A, Gupta K, Koike K, Epelbaum O. Sphingolipids in COPD. Eur Respir Rev. 2019;28(154). doi:10.1183/16000617.0047-2019
  • Bowler RP, Jacobson S, Cruickshank C, et al. Plasma sphingolipids associated with chronic obstructive pulmonary disease phenotypes. Am J Respir Crit Care Med. 2015;191(3):275–284. doi:10.1164/rccm.201410-1771OC
  • Ahmed FS, Jiang XC, Schwartz JE, et al. Plasma sphingomyelin and longitudinal change in percent emphysema on CT. The Mesa lung study. Biomarkers. 2014;19(3):207–213. doi:10.3109/1354750x.2014.896414
  • Hojjati MR, Jiang XC. Rapid, specific, and sensitive measurements of plasma sphingomyelin and phosphatidylcholine. J Lipid Res. 2006;47(3):673–676. doi:10.1194/jlr.D500040-JLR200
  • Pouw EM, Schols AM, Deutz NE, Wouters EF. Plasma and muscle amino acid levels in relation to resting energy expenditure and inflammation in stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;158(3):797–801. doi:10.1164/ajrccm.158.3.9708097
  • Hofford JM, Milakofsky L, Vogel WH, Sacher RS, Savage GJ, Pell S. The nutritional status in advanced emphysema associated with chronic bronchitis. A study of amino acid and catecholamine levels. Am Rev Respir Dis. 1990;141(4 Pt 1):902–908. doi:10.1164/ajrccm/141.4_Pt_1.902
  • Ubhi BK, Cheng KK, Dong J, et al. Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with COPD. Mol Biosyst. 2012;8(12):3125–3133. doi:10.1039/c2mb25194a
  • Wang C, Li JX, Tang D, et al. Metabolic changes of different high-resolution computed tomography phenotypes of COPD after budesonide-formoterol treatment. Int J Chron Obstruct Pulmon Dis. 2017;12:3511–3521. doi:10.2147/copd.S152134
  • Tan LC, Yang WJ, Fu WP, Su P, Shu JK, Dai LM. (1)H-NMR-based metabolic profiling of healthy individuals and high-resolution CT-classified phenotypes of COPD with treatment of tiotropium bromide. Int J Chron Obstruct Pulmon Dis. 2018;13:2985–2997. doi:10.2147/copd.S173264
  • Singh B, Jana SK, Ghosh N, et al. Metabolomic profiling of doxycycline treatment in chronic obstructive pulmonary disease. J Pharm Biomed Anal. 2017;132:103–108. doi:10.1016/j.jpba.2016.09.034
  • Moon DH, Kim J, Lim MN, Bak SH, Kim WJ. Correlation between telomere length and chronic obstructive pulmonary disease-related phenotypes: results from the chronic obstructive pulmonary disease in dusty areas (CODA) Cohort. Tuberc Respir Dis. 2021;84(3):188–199. doi:10.4046/trd.2021.0015
  • Kim S, Lim MN, Hong Y, Han SS, Lee SJ, Kim WJ. A cluster analysis of chronic obstructive pulmonary disease in dusty areas cohort identified three subgroups. BMC Pulm Med. 2017;17(1):209. doi:10.1186/s12890-017-0553-9
  • Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948–968. doi:10.1183/09031936.05.00035205
  • Choi JK, Paek D, Lee JOJT, Diseases R. Normal predictive values of spirometry in Korean population. Tuberc Respir Dis. 2005;58(3):230–242. doi:10.4046/trd.2005.58.3.230
  • Lee YK, Oh Y-M, Lee J-H, et al. Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography. Lung. 2008;186(3):157–165. doi:10.1007/s00408-008-9071-0
  • Bahr TM, Hughes GJ, Armstrong M, et al. Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2013;49(2):316–323. doi:10.1165/rcmb.2012-0230OC
  • Yoneda T, Yoshikawa M, Fu A, Tsukaguchi K, Okamoto Y, Takenaka H. Plasma levels of amino acids and hypermetabolism in patients with chronic obstructive pulmonary disease. Nutrition. 2001;17(2):95–99. doi:10.1016/s0899-9007(00)00509-8
  • Engelen MP, Wouters EF, Deutz NE, Does JD, Schols AM. Effects of exercise on amino acid metabolism in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163(4):859–864. doi:10.1164/ajrccm.163.4.2006137
  • Spiegel S, Merrill AH Jr. Sphingolipid metabolism and cell growth regulation. FASEB j. 1996;10(12):1388–1397. doi:10.1096/fasebj.10.12.8903509
  • Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9(2):139–150. doi:10.1038/nrm2329
  • Merrill AH Jr, Schmelz EM, Dillehay DL, et al. Sphingolipids–the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol. 1997;142(1):208–225. doi:10.1006/taap.1996.8029
  • McDonough JE, Yuan R, Suzuki M, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365(17):1567–1575. doi:10.1056/NEJMoa1106955
  • Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37(1):1–17. doi:10.1007/s00726-009-0269-0
  • Ubhi BK, Riley JH, Shaw PA, et al. Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur Respir J. 2012;40(2):345–355. doi:10.1183/09031936.00112411
  • Ran N, Pang Z, Gu Y, et al. An updated overview of metabolomic profile changes in chronic obstructive pulmonary disease. Metabolites. 2019;9(6):111. doi:10.3390/metabo9060111
  • Cruickshank-Quinn CI, Jacobson S, Hughes G, et al. Metabolomics and transcriptomics pathway approach reveals outcome-specific perturbations in COPD. Sci Rep. 2018;8(1):17132. doi:10.1038/s41598-018-35372-w
  • Wagenmakers AJ. Protein and amino acid metabolism in human muscle. Adv Exp Med Biol. 1998;441:307–319. doi:10.1007/978-1-4899-1928-1_28
  • Engelen MP, Wouters EF, Deutz NE, Menheere PP, Schols AM. Factors contributing to alterations in skeletal muscle and plasma amino acid profiles in patients with chronic obstructive pulmonary disease. Am J Clin Nutr. 2000;72(6):1480–1487. doi:10.1093/ajcn/72.6.1480
  • Engelen MP, Schols AM, Does JD, Deutz NE, Wouters EF. Altered glutamate metabolism is associated with reduced muscle glutathione levels in patients with emphysema. Am J Respir Crit Care Med. 2000;161(1):98–103. doi:10.1164/ajrccm.161.1.9901031
  • Callejón-Leblic BP-VA, Vázquez-Gandullo E, Gómez-Ariza JL, Gómez-Ariza JL, García-Barrera T, García-Barrera T. Study of the metabolomic relationship between lung cancer and chronic obstructive pulmonary disease based on direct infusion mass spectrometry. Biochimie. 2019;157:111–122. doi:10.1016/j.biochi.2018.11.007
  • Zinellu A, Fois AG, Zinellu E, et al. Increased kynurenine plasma concentrations and kynurenine-tryptophan ratio in mild-to-moderate chronic obstructive pulmonary disease patients. Biomark Med. 2018;12(3):229–237. doi:10.2217/bmm-2017-0280
  • Collins JM, Siddiqa A, Jones DP, et al. Tryptophan catabolism reflects disease activity in human tuberculosis. JCI Insight. 2020;5(10):e137131. doi:10.1172/jci.insight.137131
  • Rhodes CJ, Ghataorhe P, Wharton J, et al. Plasma metabolomics implicates modified transfer RNAs and altered bioenergetics in the outcomes of pulmonary arterial hypertension. Circulation. 2017;135(5):460–475. doi:10.1161/CIRCULATIONAHA.116.024602
  • Li C, Zhao H. Tryptophan and its metabolites in lung cancer: basic functions and clinical significance. Front Oncol. 2021;11:707277.
  • Haid M, Muschet C, Wahl S, et al. Long-term stability of human plasma metabolites during storage at −80 ℃. J Proteome Res. 2018;17(1):203–211. doi:10.1021/acs.jproteome.7b00518
  • González-Domínguez R, González-Domínguez Á, Sayago A, Fernández-Recamales Á. Recommendations and best practices for standardizing the pre-analytical processing of blood and urine samples in metabolomics. Metabolites. 2020;10(6):229. doi:10.3390/metabo10060229
  • Wagner-Golbs A, Neuber S, Kamlage B, et al. Effects of long-term storage at −80 ℃ on the human plasma metabolome. Metabolites. 2019;9(5):99. doi:10.3390/metabo9050099