186
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Common Pathogeneses Underlying Asthma and Chronic Obstructive Pulmonary Disease -Insights from Genetic Studies

Pages 633-642 | Received 27 Oct 2023, Accepted 21 Feb 2024, Published online: 04 Mar 2024

References

  • Suzuki M, Makita H, Konno S, Nishimura M. Clinical characteristics and natural course of chronic obstructive pulmonary disease and/or asthma in Japanese patients: a summary report of two Hokkaido-based cohort studies. Respir Investig. 2023;61(4):527–539. doi:10.1016/j.resinv.2023.05.002
  • Holtjer JCS, Bloemsma LD, Beijers RJHCG, et al. Identifying risk factors for COPD and adult-onset asthma: an umbrella review. Eur Respir Rev. 2023;32(168):230009. doi:10.1183/16000617.0009-2023
  • Hizawa N. The understanding of asthma pathogenesis in the era of precision medicine. Allergol Int. 2023;72(1):3–10. doi:10.1016/j.alit.2022.09.001
  • Hirschhorn JN. Genomewide association studies—illuminating biologic pathways. N Engl J Med. 2009;360(17):1699–1701. doi:10.1056/NEJMp0808934
  • Agustí A, Celli B, Faner R. What does endotyping mean for treatment in chronic obstructive pulmonary disease? Lancet. 2017;390(10098):980–987. doi:10.1016/S0140-6736(17)32136-0
  • Orie N, Sluiter H, DeVries K, et al. The host factor in bronchitis. In: Bronchitis: An International Symposium, 27–29 April 1960, Groningen. Assen, Royal Van Gorcum; 1961:43–59.
  • Weiss ST. What genes tell us about the pathogenesis of asthma and chronic obstructive pulmonary disease Am. J Respir Crit Care Med. 2010;181(11):1170–1173. doi:10.1164/rccm.201001-0069PP
  • Kaneko Y, Yatagai Y, Yamada H, et al. The search for common pathways underlying asthma and COPD. Int J Chron Obstruct Pulmon Dis. 2013;8:65–78. doi:10.2147/COPD.S39617
  • Beamer CA, Shepherd DM. DM Role of the aryl hydrocarbon receptor (AhR) in lung inflammation. Semin Immunopathol. 2013;35(6):693–704. doi:10.1007/s00281-013-0391-7
  • Veldhoen M, Hirota K, Westendorf AM, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008;453(7191):106–109. doi:10.1038/nature06881
  • Hu X, Shen Y, Zhao Y, et al. Epithelial aryl hydrocarbon receptor protects from mucus production by inhibiting ROS-triggered NLRP3 Inflammasome in asthma. Front Immunol. 2021;12:767508. doi:10.3389/fimmu.2021.767508
  • Yatagai Y, Hirota T, Sakamoto T, et al. Variants near the HLA complex group 22 gene (HCG22) confer increased susceptibility to late-onset asthma in Japanese populations. J Allergy Clin Immunol. 2016;138(1):281–283. doi:10.1016/j.jaci.2015.11.023
  • Hijikata M, Matsushita I, Tanaka G, et al. Molecular cloning of two novel mucin-like genes in the disease-susceptibility locus for diffuse panbronchiolitis. Hum Genet. 2011;129(2):117–128. doi:10.1007/s00439-010-0906-4
  • Nomura N, Matsumoto H, Sunadome H, et al. Importance of mucus burden and mucociliary impairment in asthma. J Allergy Clin Immunol. 2023;151(5):1410–1411. doi:10.1016/j.jaci.2023.01.024
  • Jeong S, Patel N, Edlund CK, et al. Identification of a novel mucin gene HCG22 associated with steroid-induced ocular hypertension. Invest Ophthalmol Vis Sci. 2015;56(4):2737–2748. doi:10.1167/iovs.14-14803
  • Ober C, Tan Z, Sun Y, et al. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med. 2008;358(16):1682–1691. doi:10.1056/NEJMoa0708801
  • James AJ, Reinius LE, Verhoek M, et al. Increased YKL-40 and chitotriosidase in asthma and chronic obstructive pulmonary disease Am. J Respir Crit Care Med. 2016;193(2):131–142. doi:10.1164/rccm.201504-0760OC
  • Boucher RC, Drazen JM. Muco-obstructive lung diseases. N Engl J Med. 2019;380(20):1941–1953. doi:10.1056/NEJMra1813799
  • Yatagai Y, Sakamoto T, Yamada H, et al. Genomewide association study identifies HAS2 as a novel susceptibility gene for adult asthma in a Japanese population. Clin Exp Allergy. 2014;44(11):1327–1334. doi:10.1111/cea.12415
  • Dentener MA, Vernooy JHJ, Hendriks S, Wouters EFM. Enhanced levels of hyaluronan in lungs of patients with COPD: relationship with lung function and local inflammation. Thorax. 2005;60(2):114–119. doi:10.1136/thx.2003.020842
  • Tsunoda Y, Sherpa MT, Kiwamoto T, et al. Has2 deficiency enhances OVA- induced airway inflammation and hyperresponsiveness in mice. Allergy. 2021;76(7):2214–2218. doi:10.1111/all.14715
  • Sherpa MT, Kiwamoto T, Matsuyama M, et al. Has2 regulates the development of ovalbumin-induced airway remodeling and steroid insensitivity in mice. Front Immunol. 2022;12:770305. doi:10.3389/fimmu.2021.770305
  • Barnes N, Ishii T, Hizawa N, et al. The distribution of blood eosinophil levels in a Japanese COPD clinical trial database and in the rest of the world. Int J Chron Obstruct Pulmon Dis. 2018;13:433–440. doi:10.2147/COPD
  • Christenson SA, Steiling K, van den Berge M, et al. Asthma-COPD overlap Clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191(7):758–766. doi:10.1164/rccm.201408-1458OC
  • John C, Guyatt AL, Shrine N, et al. Genetic Associations and Architecture of Asthma-COPD Overlap. Chest. 2022;161(5):1155–1166. doi:10.1016/j.chest
  • Ying S, O’Connor B, Ratoff J, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol. 2008;181(4):2790–2798. doi:10.4049/jimmunol.181.4.2790
  • Lee HC, Headley MB, Loo YM, et al. Thymic stromal lymphopoietin is induced by respiratory syncytial virus-infected airway epithelial cells and promotes a type 2 response to infection. J Allergy Clin Immunol. 2012;130(5):1187–1196.e5. doi:10.1016/j.jaci.2012.07.031
  • Perez GF, Pancham K, Huseni S, et al. Rhinovirus infection in young children is associated with elevated airway TSLP levels. Eur Respir J. 2014;44(4):1075–1078. doi:10.1183/09031936.00049214
  • Nakamura Y, Miyata M, Ohba T, et al. Cigarette smoke extract induces thymic stromal lymphopoietin expression, leading to T(H)2-type immune responses and airway inflammation. J Allergy Clin Immunol. 2008;122(6):1208–1214. doi:10.1016/j.jaci.2008.09.022
  • Smelter DF, Sathish V, Thompson MA, Pabelick CM, Vassallo R, Prakash YS. Thymic stromal lymphopoietin in cigarette smoke-exposed human airway smooth muscle. J Immunol. 2010;185(5):3035–3040. doi:10.4049/jimmunol.1000252
  • Masuko H, Sakamoto T, Kaneko Y, et al. Lower FEV1 in non-COPD, nonasthmatic subjects: association with smoking, annual decline in FEV1, total IgE levels, and TSLP genotypes. Int J Chron Obstruct Pulmon Dis. 2011;6:181–189. doi:10.2147/COPD.S16383
  • Balantic M, Rijavec M, Flezar M, et al. A polymorphism in ORMDL3 is associated not only with asthma without rhinitis but also with chronic obstructive pulmonary disease. J Investig Allergol Clin Immunol. 2013;23(4):256–261.
  • Zhang Y, Willis-Owen SAG, Spiegel S, Lloyd CM, Moffatt MF, Cookson WOCM; WOCM. The ORMDL3 Asthma Gene Regulates ICAM1 and Has Multiple Effects on Cellular Inflammation. J Respir Crit Care Med. 2019;199(4):478–488. doi:10.1164/rccm.201803-0438OC
  • Bouzigon E, Corda E, Aschard H, et al. Effect of 17q21 variants and smoking exposure in early-onset asthma. N Engl J Med. 2008;359(19):1985–1994. doi:10.1056/NEJMoa0806604
  • Kitazawa H, Masuko H, Kanazawa J, et al. ORMDL3/GSDMB genotype as a risk factor for early-onset adult asthma is linked to total serum IgE levels but not to allergic sensitization. Allergol Int. 2021;70(1):55–60. doi:10.1016/j.alit.2020.04.009
  • Wronski S, Beinke S, Obernolte H, et al. Rhinovirus-induced human lung tissue responses mimic chronic obstructive pulmonary disease and asthma gene signatures Am. J Respir Cell Mol Biol. 2021;65(5):544–554. doi:10.1165/rcmb.2020-0337OC
  • Hizawa N, Yamaguchi E, Konno S, Tanino Y, Jinushi E, Nishimura M. A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma. Am J Respir Crit Care Med. 2002;166(5):686–690. doi:10.1164/rccm.200202-090OC
  • Hizawa N, Makita H, Nasuhara Y, et al. Functional single nucleotide polymorphisms of the CCL5 gene and nonemphysematous phenotype in COPD patients. Eur Respir J. 2008;32(2):372–378. doi:10.1183/09031936.00115307
  • Gauthier M, Kale SL, Oriss TB, et al. CCL5 is a potential bridge between type 1 and type 2 inflammation in asthma. J Allergy Clin Immunol. 2023;152(1):94–106.e12. doi:10.1016/j.jaci.2023.02.028
  • Bochkov YA, Watters K, Ashraf S, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A. 2015;112(17):5485–5490. doi:10.1073/pnas.1421178112
  • Kanazawa J, Masuko H, Yatagai Y, et al. Genetic association of the functional CDHR3 genotype with early-onset adult asthma in Japanese populations. Allergol Int. 2017;66(4):563–567. doi:10.1016/j.alit.2017.02.012
  • Shigemasa R, Masuko H, Hyodo K, et al. Genetic impact of CDHR3 on the adult onset of asthma and COPD. Clin Exp Allergy. 2020;50(11):1223–1229. doi:10.1111/cea.13699
  • Lange P, Celli B, Agustí A, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med. 2015;373(2):111–122. doi:10.1056/NEJMoa1411532
  • Chang D, Hunkapiller J, Bhangale T, et al. A whole genome sequencing study of moderate to severe asthma identifies a lung function locus associated with asthma risk. Sci Rep. 2022;12(1):5574. doi:10.1038/s41598-022-09447-8
  • Moll M, Sordillo JE, Ghosh AJ, et al. Polygenic risk scores identify heterogeneity in asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2023;152(6):1423–1432. doi:10.1016/j.jaci.2023.08.002
  • Yamada H, Masuko H, Yatagai Y, et al. Role of lung function genes in the development of asthma. PLoS One. 2016;11(1):e0145832. doi:10.1371/journal.pone.0145832
  • Portas L, Pereira M, Shaheen SO, et al. Lung development genes and adult lung function. Am J Respir Crit Care Med. 2020;202(6):853–865. doi:10.1164/rccm.201912-2338OC
  • Paré PD. The smoking gun: genetics and genomics reveal causal pathways for COPD. Can J Respir Crit Care Sleep Med. 2017;1(3):126–132. doi:10.1080/24745332.2017.1361203
  • Wang AL, Lahousse L, Dahlin A, et al. Novel genetic variants associated with inhaled corticosteroid treatment response in older adults with asthma. Thorax. 2023;78(5):432–441. doi:10.1136/thoraxjnl-2021-217674
  • Chung JH, Larsen AR, Chen E, Bunz F. A PTCH1 homolog transcriptionally activated by p53 suppresses Hedgehog signaling. J Biol Chem. 2014;289(47):33020–33031. doi:10.1074/jbc.M114.597203
  • Casella G, Munk R, Kim KM, et al. Transcriptome signature of cellular senescence. Nucleic Acids Res. 2019;47(14):7294–7305. doi:10.1093/nar/gkz555
  • Morrow JD, Cho MH, Hersh CP, et al. DNA methylation profiling in human lung tissue identifies genes associated with COPD. Epigenetics. 2016;11(10):730–739. doi:10.1080/15592294.2016.1226451
  • Stolz D, Papakonstantinou E, Pascarella M, et al. Airway smooth muscle area to predict steroid responsiveness in COPD patients receiving triple therapy (HISTORIC): a randomised, placebo-controlled, double-blind, investigator-initiated trial. Eur Respir J. 2023;62(1):2300218. doi:10.1183/13993003.00218-2023
  • Hizawa N. Clinical approaches towards asthma and chronic obstructive pulmonary disease based on the heterogeneity of disease pathogenesis. Clin Exp Allergy. 2016;46(5):678–687. doi:10.1111/cea.12731
  • Hizawa N. LAMA/LABA vs ICS/LABA in the treatment of COPD in Japan based on the disease phenotypes. Int J Chron Obstruct Pulmon Dis. 2015;10:1093–1102. doi:10.2147/COPD.S72858
  • Agusti A, Bel E, Thomas M, et al. Treatable traits: toward precision medicine of chronic airway diseases. Eur Respir J. 2016;47(2):410–419. doi:10.1183/13993003.01359-2015
  • Pavord ID, Beasley R, Agusti A, et al. After asthma: redefining airways diseases. Lancet. 2018;391(10118):350–400. doi:10.1016/S0140-6736(17)30879-6
  • Hyodo K, Masuko H, Oshima H, et al. Common exacerbation-prone phenotypes across asthma and chronic obstructive pulmonary disease (COPD). PLoS One. 2022;17(3):e0264397. doi:10.1371/journal.pone.0264397
  • Bhatt SP, Rabe KF, Hanania NA, et al. Dupilumab for COPD with type 2 inflammation indicated by eosinophil counts. N Engl J Med. 2023;389(3):205–214. doi:10.1056/NEJMoa2303951