17
Views
0
CrossRef citations to date
0
Altmetric
Review

The molecular clock: a focus on chronopharmacological strategies for a possible control of aminoglycoside renal toxicity

Pages 1-7 | Published online: 04 Jan 2012

References

  • Halberg F. Chronobiology. Annu Rev Physiol. 1969;31:675–725.
  • Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247(4945):975–978.
  • Muñoz M, Peirson SN, Hankins MW, Foster RG. Long-term constant light induces constitutive elevated expression of mPER2 protein in the murine SCN: a molecular basis for Aschoff’s rule? J Biol Rhythms. 2005;20(1):3–14.
  • Albrecht U. Invited review: regulation of mammalian circadian clock genes. J Appl Physiol. 2002;92(3):1348–1355.
  • Cermakian N, Boivin DB. A molecular perspective of human circadian rhythm disorders. Brain Res Rev. 2003;42(3):204–220.
  • Hastings MH, Herzog ED. Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J Biol Rhythms. 2004;19(5):400–413.
  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950–2961.
  • Hirao J, Arakawa S, Watanabe K, Ito K, Furukawa T. Effects of restricted feeding on daily fluctuations of hepatic functions including p450 monooxygenase activities in rats. J Biol Chem. 2006;281(6):3165–3171.
  • Sheward WJ, Maywood ES, French KL, et al. Entrainment to feeding but not to light: circadian phenotype of VPAC2 receptor-null mice. J Neurosci. 2007;27(16):4351–4358.
  • Hayashi Y, Ushijima K, Ando H, et al. Influence of a time-restricted feeding schedule on the daily rhythm of abcb1a gene expression and its function in rat intestine. J Pharmacol Exp Ther. 2010;335(2):418–423.
  • Reinberg AE. Concepts in chronopharmacology Annu Rev Pharmacol Toxicol. 1992;32:51–66.
  • Ritschel WA, Forusz H. Chronopharmacology, a review of drugs studied. Methods Find Exp Clin Pharmacol. 1994;16(1):57–75.
  • Bruguerolle B. Chronopharmacokinetics. Current status. Clin Pharmacokinet. 1998;35(2):83–94.
  • Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol. 2004;2(4):289–300.
  • Wirz-Justice A. Circadian rhythms in mammalian neurotransmitter receptors. Prog Neurobiol. 1987;29(3):219–259.
  • Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. Aminoglycosides: activity and resistance. Antimicrob Agents Chemother. 1999;43(4):727–737.
  • Prins JM, Weverling GJ, de Blok K, van Ketel RJ, Speelman P Validation and nephrotoxicity of a simplified once-daily aminoglycoside dosing schedule and guidelines for monitoring therapy. Antimicrob Agents Chemother. 1996;40(11):2494–2499.
  • Quiros Y, Vicente-Vicente L, Morales AI, Lopez-Novoa JM, Lopez- Hernandez FJ. An integrative overview on the mechanisms underlying the renal tubular cytotoxicity of gentamicin. Toxicol Sci. 2011;119(2):245–256.
  • Rao SC, Ahmed M, Hagan R. One dose per day compared to multiple doses per day of gentamicin for treatment of suspected or proven sepsis in neonates. Cochrane Database Syst Rev. 2006;25(1):CD005091.
  • Rybak MJ, Abate BJ, Kang SL, Ruffing MJ, Lerner SA, Drusano GL. Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob Agents Chemother. 1999;43(7):1549–1555.
  • Bourguignon L, Goutelle S, De Saint-Martin JB, Maire P, Ducher M. Evaluation of various gentamicin dosage regimens in geriatric patients: a simulation study. Fundam Clin Pharmacol. 2010;24(1):109–113.
  • Yoshiyama Y, Kobayashi T, Tomonaga F, Nakano S. Chronotoxical study of gentamicin induced nephrotoxicity in rats. J Antibiot (Tokyo). 1992;45(5):806–808.
  • Beauchamp D, Collin P, Grenier L, et al. Effects of fasting on temporal variation in nephrotoxicity of gentamicin in rats. Antimicrob Agents Chemother. 1996;40(3):670–676.
  • Beauchamp D, Guimont C, Grenier L, et al. Time-restricted feeding schedules modify temporal variation of gentamicin experimental nephrotoxicity. Antimicrob Agents Chemother. 1997;41(7):1468–1474.
  • Julien N, Karzasi M, Labrecque G, Beauchamp D, Thibault L. Temporal modulation of nephrotoxicity, feeding, and drinking in gentamicin- treated rats. Physiol Behav. 2000;68(4):533–541.
  • Paquette M, Plante I, Labrecque G, Beauchamp D, Thibault L. Dietary composition alters gentamicin-induced nephrotoxicity in rats. Physiol Behav. 2002;77(1):141–150.
  • Lin L, Grenier I, Bergeron Y, et al. Temporal changes of pharmacokinetic s, nephrotoxicity and subcellular distribution of tobramycin in rats. Antimicrob Agents Chemother. 1994;38(1):54–60.
  • Lin L, Grenier L, Theriault G, et al. Nephrotoxicity of low doses of tobramycin in rats: effect of the time of administration. Life Sci 1994;55(3):169–177.
  • Lin L, Grenier L, Guimont C, et al. Circadian variation in the intracortical accumulation kinetics of tobramycin in conscious rats. Chronobiol Int. 1995;12(3):188–194.
  • Yoshiyama Y, Nishikawa S, Sugiyama T, et al. Influence of circadian-stage-dependent dosing schedule on nephrotoxicity and pharmacokinetics of isepamicin in rats. Antimicrob Agents Chemother. 1993;37(9):2042–2053.
  • Yoshiyama Y, Grenier L, Gourde P, et al. Temporal variation in nephrotoxicity of low doses of isepamicin in rats. Antimicrob Agents Chemother. 1996;40(3):802–806.
  • Beauchamp D, Labrecque G. Aminoglycoside nephrotoxicity: do time and frequency of administration matter? Curr Opin Crit Care. 2001;7(6): 401^08.
  • Beauchamp D, Labrecque G. Chronobiology and chronotoxicology of antibiotics and aminoglycosides. Adv Drug Deliv Rev. 2007;59(9–10):896–903.
  • Prins JM, Weverling GJ, van Ketel RJ, Speelman P. Circadian variations in serum levels and the renal toxicity of aminoglycoside in patients. Clin Pharmacol Ther. 1997;62(1):106–1011.
  • Fauvelle F, Perrin P, Belfayol L, et al. Fever and associated changes in glomerular filtration rate erase anticipated diurnal variations in aminoglycoside pharmacokinetics. Antimicrob Agents Chemother. 1994;38(3):620–623.
  • Rougier F, Claude D, Maurin M, et al. Aminoglycoside nephrotoxicity: modeling, simulation, and control. Antimicrob Agents Chemother. 2003;47(3):1010–1016.
  • Pons M, Forpomés O, Espagnet S, Cambar J. Relationship between circadian changes in renal hemodynamics and circadian changes in urinary glycosaminoglycan excretion in normal rats. Chronobiol Int. 1996;13(5):349–358.
  • Pons M, Schnecko A, Witte K, Lemmer B, Waterhouse JM, Cambar J. Circadian rhythms in renal function in hypertensive TGR (mRen-2) rats and their normotensive controls. Am J Physiol 1996;271(4 Pt 2): R1002–R1008.
  • Pons M, Mellado M, Cambar J. Effects of cyclosporin A on circadian changes in urinary water, sodium and potasium excretion in conscious unrestained chronically cannulated rats. Biol Rythms Res. 1997;28:56–68.
  • Voogel AJ, Koopman MG, Hart AA, van Montfrans GA, Arisz L. Circadian rhythms in systemic hemodynamics and renal function in healthy subjects and patients with nephrotic syndrome. Kidney Int. 2001;59(5):1873–1880.
  • Kamperis K, Hansen MN, Hagstroem S, Hvistendahl G, Djurhuus JC, Rittig S. The circadian rhythm of urine production, and urinary vasopressin and prostaglandin E2 excretion in healthy children. J Urol 2004;171(6 Pt 2):2571–2575.
  • Widerhon N, Díaz D, Picco E, Rebuelto M, Encinas T, Carlos Boggio J. Chronopharmacokinetic study of gentamicin in dogs. Chronobiol Int. 2005;22(4):731–739.
  • Bleyzac N, Allard-Latour B, Laffont A, Mouret J, Jelliffe R, Maire P Diurnal changes in the pharmacokinetic behavior of amikacin. Ther DrugMonit. 2000;22(3):307–312.
  • LeBrun M, Grenier L, Gourde P, Bergeron M, Labrecque G, Beauchamp D. Effectiveness and toxicity of gentamicin in an experimental model of pyelonephritis: effect of the time of administration. Antimicrob Agents Chemother. 1999;43(5):1020–1026.
  • Wu T, Ni Y, Dong Y, et al. Regulation of circadian gene expression in the kidney by light and food cues in rats. Am J Physiol Regul Integr Comp Physiol. 2010;298(3):R635–R641.
  • Zuber AM, Centeno G, Pradervand S, et al. Molecular clock is involved in predictive circadian adjustment of renal function. Proc Natl Acad Sci USA. 2009;106(38):16523–16528.
  • Firsov D, Tokonami N, Bonny O. Role of the renal circadian timing system in maintaining water and electrolytes homeostasis. Mol Cell Endocrinol. 2011. doi: 10.1016/j.mce.2011.06.037.
  • Gumz ML, Stow LR, Lynch IJ, et al. The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. J Clin Invest. 2009;119(8):2423–2434.
  • Saifur Rohman M, Emoto N, Nonaka H, et al. Circadian clock genes directly regulate expression of the Na(+)/H(+) exchanger NHE3 in the kidney. Kidney Int. 2005;67(4):1410–1419.
  • Nishinaga H, Komatsu R, Doi M, et al. Circadian expression of the Na+/H+ exchanger NHE3 in the mouse renal medulla. Biomed Res. 2009;30(2):87–93.
  • Reiter RJ, Tan DX, Fuentes-Broto L. Melatonin: a multitasking molecule. Prog Brain Res. 2010;181:127–151.
  • Ramirez-Rodríguez G, Meza I, Hernández ME, Castillo A, Benítez- King G. Melatonin induced cyclic modulation of vectorial water transport in kidney-derived MDCK cells. Kidney Int. 2003;63(4):1356–1364.
  • Ozbek E, Turkoz Y, Sahna E, Ozugurlu F, Mizrak B, Ozbek M. Melatonin administration prevents the nephrotoxicity induced by gentamicin. BJU Int. 2000;85(6):742–746.
  • Sener G, Sehirli AO, Altunbas HZ, et al. Melatonin protects against gentamicin-induced nephrotoxicity in rats. J Pineal Res. 2002;32(4):231–236.
  • Parlakpinar H, Ozer MK, Sahna E, Vardi N, Cigremis Y, Acet A. Amikacin-induced acute renal injury in rats: protective role of melatonin. J Pineal Res. 2003;35(2):85–90.
  • Kim JB, Jung JY, Ahn JC, Rhee CK, Hwang HJ. Antioxidant and anti- apoptotic effect of melatonin on the vestibular hair cells of rat utricles. Clin Exp Otorhinolaryngol. 2009;2(1):6–12.
  • Reiter RJ, Tan DX, Korkmaz A, Fuentes-Broto L. Drug-mediated ototoxicity and tinnitus: alleviation with melatonin. J Physiol Pharmacol. 2011;62(2):151–157.
  • Odera K, Goto S, Takahashi R. Age-related change of endocytic receptors megalin and cubilin in the kidney in rats. Biogerontology. 2007;8(5):505–515.
  • Christensen EI, Verroust PJ, Nielsen R. Receptor-mediated endocytosis in renal proximal tubule. Pflugers Arch. 2009;458(6):1039–1048.
  • Saito A, Sato H, Iino N, Takeda T. Molecular mechanisms of receptor- mediated endocytosis in the renal proximal tubular epithelium. J Biomed Biotechnol. 2010;2010:403272.
  • Moestrup SK, Cui S, Vorum H, et al. Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs. J Clin Invest. 1995;96(3):1404–1413.
  • Antoine DJ, Srivastava A, Pirmohamed M, Park BK. Statins inhibit aminoglycoside accumulation and cytotoxicity to renal proximal tubule cells. Biochem Pharmacol. 2010;79(4):647–654.
  • Vegt E, Melis M, Eek A, et al. Renal uptake of different radiolabelled peptides is mediated by megalin: SPECT and biodistribution studies in megalin-deficient mice. Eur J Nucl Med Mol Imaging. 2011;38(4):623–632.
  • Verroust PJ, Kozyraki R. Cubilin: physiopathologic role and relationship with megalin. Med Sci (Paris). 2003;19(3):337–343. French.
  • Schmitz C, Hilpert J, Jacobsen C, et al. Megalin deficiency offers protection from renal aminoglycoside accumulation. J Biol Chem. 2002;277(1):618–622.
  • Chlon TM, Taffany DA, Welsh J, Rowling MJ. Retinoids modulate expression of the endocytic partners megalin, cubilin, and disabled-2 and uptake of vitamin D-binding protein in human mammary cells. J Nutr. 2008;138(7):1323–1328.
  • Marzolo MP, Farfán P. New insights into the roles of megalin/LRP2 and the regulation of its functional expression. Biol Res. 2011;44(1):89–105.
  • Cabezas F, Lagos J, Céspedes C, Vio CP, Bronfman M, Marzolo MP Megalin/LRP2 expression is induced by peroxisome proliferator- activated receptor -alpha and -gamma: implications for PPARs’ roles in renal function. PLoS One. 2011;6(2):e16794.
  • Teboul M, Gréchez-Cassiau A, Guillaumond F, Delaunay F How nuclear receptors tell time. J Appl Physiol. 2009;107(6):1965–1971.
  • Yang X. A wheel of time: the circadian clock, nuclear receptors, and physiology. Genes Dev. 2010;24(8):741–747.
  • Nakamura K, Inoue I, Takahashi S, Komoda T, Katayama S. Cryptochrome and period proteins are regulated by the CLOCK/ BMAL1 gene: crosstalk between the PPARs/RXRalpha-Regulated and CLOCK/BMAL1-regulated systems. PPAR Res. 2008;2008:348610.
  • Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 2010;24(4):345–357.
  • Oishi K, Shirai H, Ishida N. CLOCK is involved in the circadian- transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochem J. 2005;386(Pt 3):575–581.
  • Oishi K, Uchida D, Ishida N. Circadian expression of FGF21 is induced by PPARalpha activation in the mouse liver. FEBS Lett. 2008;582(25–26):3639–3642.
  • Charoensuksai P, Xu W PPARs in rhythmic metabolic regulation and implications in health and disease. PPAR Res. 2010;2010. pii: 243643.
  • Grimaldi B, Bellet MM, Katada S, et al. PER2 controls lipid metabolism by direct regulation of PPARy. Cell Metab. 2010;12(5):509–520.
  • Inoue I, Shinoda Y, Ikeda M, et al. CLOCK/BMAL1 is involved in lipidmetabolism via transactivation of the peroxisome proliferator- activated receptor (PPAR) response element. J Atheroscler Thromb. 2005;12(3):169–174.
  • Takahashi S, Inoue I, Nakajima Y, et al. A promoter in the novel exon of hPPARgamma directs the circadian expression of PPARgamma. J Atheroscler Thromb. 2010;17(1):73–83.
  • Yang X, Downes M, Yu RT, et al. Nuclear receptor expression links the circadian clock to metabolism. Cell. 2006;126(4):801–810.
  • Balasubramaniam S, Szanto A, Roach PD. Circadian rhythm in hepatic low-density-lipoprotein (LDL)-receptor expression and plasma LDL levels. Biochem J. 1994;298(Pt 1):39–43.
  • Kudo T, Kawashima M, Tamagawa T, Shibata S. Clock mutation facilitates accumulation of cholesterol in the liver of mice fed a cholesterol and/or cholic acid diet. Am J Physiol Endocrinol Metab. 2008;294(1):E120–E130.
  • Biemesderfer D, Nagy T, DeGray B, Aronson PS. Specific association of megalin and the Na+/H+ exchanger isoform NHE3 in the proximal tubule. J Biol Chem. 1999;274(25):17518–17524.